Dispersion dynamics of quantum cascade lasers

被引:26
作者
Burghoff, David [1 ]
Yang, Yang [1 ]
Reno, John L. [2 ]
Hu, Qing [1 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Elect Res Lab, Cambridge, MA 02139 USA
[2] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87123 USA
来源
OPTICA | 2016年 / 3卷 / 12期
基金
美国国家科学基金会;
关键词
GROUP-VELOCITY DISPERSION; FREQUENCY COMBS; SEMICONDUCTOR-LASER; GAIN; SPECTROSCOPY; EMISSION; SPECTRA; DESIGN;
D O I
10.1364/OPTICA.3.001362
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A key parameter underlying the efficacy of any nonlinear optical process is group velocity dispersion. In quantum cascade lasers (QCLs), there have been several recent demonstrations of devices exploiting nonlinearities in both the mid-infrared and the terahertz. Though the gain of QCLs has been well studied, the dispersion has been much less investigated, and several questions remain about its dynamics and precise origin. In this work, we use time-domain spectroscopy to investigate the dispersion of broadband terahertz QCLs, and demonstrate that contributions from both the material and the intersubband transitions are relevant. We show that in contrast to the laser gain-which is clamped to a fixed value above lasing threshold-the dispersion changes with bias even above threshold, which is a consequence of shifting intersubband populations. We also examine the role of higher-order dispersion in QCLs and discuss the ramifications of our result for devices utilizing nonlinear effects, such as frequency combs. (C) 2016 Optical Society of America
引用
收藏
页码:1362 / 1365
页数:4
相关论文
共 35 条
  • [1] Spectral gain profile of a multi-stack terahertz quantum cascade laser
    Bachmann, D.
    Roesch, M.
    Deutsch, C.
    Krall, M.
    Scalari, G.
    Beck, M.
    Faist, J.
    Unterrainer, K.
    Darmo, J.
    [J]. APPLIED PHYSICS LETTERS, 2014, 105 (18)
  • [2] Barbieri S, 2011, NAT PHOTONICS, V5, P306, DOI [10.1038/NPHOTON.2011.49, 10.1038/nphoton.2011.49]
  • [3] SEMICONDUCTING AND OTHER MAJOR PROPERTIES OF GALLIUM-ARSENIDE
    BLAKEMORE, JS
    [J]. JOURNAL OF APPLIED PHYSICS, 1982, 53 (10) : R123 - R181
  • [4] Evaluating the coherence and time-domain profile of quantum cascade laser frequency combs
    Burghoff, David
    Yang, Yang
    Hayton, Darren J.
    Gao, Jian-Rong
    Reno, John L.
    Hu, Qing
    [J]. OPTICS EXPRESS, 2015, 23 (02): : 1190 - 1202
  • [5] Terahertz laser frequency combs
    Burghoff, David
    Kao, Tsung-Yu
    Han, Ningren
    Chan, Chun Wang Ivan
    Cai, Xiaowei
    Yang, Yang
    Hayton, Darren J.
    Gao, Jian-Rong
    Reno, John L.
    Hu, Qing
    [J]. NATURE PHOTONICS, 2014, 8 (06) : 462 - 467
  • [6] Gain measurements of scattering-assisted terahertz quantum cascade lasers
    Burghoff, David
    Chan, Chun Wang Ivan
    Hu, Qing
    Reno, John L.
    [J]. APPLIED PHYSICS LETTERS, 2012, 100 (26)
  • [7] A terahertz pulse emitter monolithically integrated with a quantum cascade laser
    Burghoff, David
    Kao, Tsung-Yu
    Ban, Dayan
    Lee, Alan Wei Min
    Hu, Qing
    Reno, John
    [J]. APPLIED PHYSICS LETTERS, 2011, 98 (06)
  • [8] Origins of Terahertz Difference Frequency Susceptibility in Midinfrared Quantum Cascade Lasers
    Burnett, Benjamin A.
    Williams, Benjamin S.
    [J]. PHYSICAL REVIEW APPLIED, 2016, 5 (03):
  • [9] Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator
    Castellano, Fabrizio
    Li, Lianhe
    Linfield, Edmund H.
    Davies, A. Giles
    Vitiello, Miriam S.
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [10] QUANTUM CASCADE LASER
    FAIST, J
    CAPASSO, F
    SIVCO, DL
    SIRTORI, C
    HUTCHINSON, AL
    CHO, AY
    [J]. SCIENCE, 1994, 264 (5158) : 553 - 556