McCoy modules and related modules over commutative rings

被引:14
|
作者
Anderson, D. D. [1 ]
Chun, Sangmin [2 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[2] Seoul Natl Univ, Dept Math, Seoul 151747, South Korea
关键词
Arithmetical module; Armendariz module; dual McCoy module; Gaussian module; McCoy module; ARMENDARIZ RINGS;
D O I
10.1080/00927872.2016.1233218
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a left R-module. Then M is a McCoy (resp., dual McCoy) module if for nonzero f (X) is an element of R[X] and m(X) is an element of M[X], f (X) m(X) = 0 implies there exists a nonzero r is an element of R (resp., m is an element of M) with rm(X) = 0 (resp., f (X) m = 0). We show that for R commutative every R-module is dual McCoy, but give an example of a non-McCoy module. A number of other results concerning (dual) McCoy modules as well as arithmetical, Gaussian, and Armendariz modules are given.
引用
收藏
页码:2593 / 2601
页数:9
相关论文
共 41 条
  • [31] On a property of polynomial rings over reversible rings
    Jin, Hai-lan
    Kim, Hong Kee
    Kwak, Tai Keun
    Lee, Yang
    Piao, Zhelin
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (02) : 836 - 851
  • [32] SKEW POLYNOMIAL RINGS OVER SEMIPRIME RINGS
    Hong, Chan Yong
    Kim, Nam Kyun
    Lee, Yang
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2010, 47 (05) : 879 - 897
  • [33] ON PROPERTIES RELATED TO REVERSIBLE RINGS
    Jung, Da Woon
    Kim, Nam Kyun
    Lee, Yang
    Ryu, Sung Ju
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (01) : 247 - 261
  • [34] Skew polynomial rings over sigma-skew Armendariz rings
    Bhat, V. K.
    Abrol, Meeru
    COGENT MATHEMATICS, 2016, 3
  • [35] DIFFERENTIAL POLYNOMIALS OVER BAER RINGS
    Hashemi, Ebrahim
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2009, 6 : 38 - 45
  • [36] Ring properties related to symmetric rings
    Jung, Da Woon
    Kwak, Tai Keun
    Lee, Min Jung
    Lee, Yang
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2014, 24 (07) : 935 - 967
  • [37] Skew PBW extensions over symmetric rings
    Reyes, A.
    Suarez, H.
    ALGEBRA AND DISCRETE MATHEMATICS, 2021, 32 (01): : 76 - 102
  • [38] ON JACOBSON AND NIL RADICALS RELATED TO POLYNOMIAL RINGS
    Kwak, Tai Keun
    Lee, Yang
    Ozcan, A. Cigdem
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (02) : 415 - 431
  • [39] RINGS OVER WHICH COEFFICIENTS OF NILPOTENT POLYNOMIALS ARE NILPOTENT
    Kwak, Tai Keun
    Lee, Yang
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2011, 21 (05) : 745 - 762
  • [40] On skew polynomials over Ikeda-Nakayama rings
    Paykanian, M.
    Hashemi, E.
    Alhevaz, A.
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (09) : 4038 - 4049