McCoy modules and related modules over commutative rings

被引:14
|
作者
Anderson, D. D. [1 ]
Chun, Sangmin [2 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[2] Seoul Natl Univ, Dept Math, Seoul 151747, South Korea
关键词
Arithmetical module; Armendariz module; dual McCoy module; Gaussian module; McCoy module; ARMENDARIZ RINGS;
D O I
10.1080/00927872.2016.1233218
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a left R-module. Then M is a McCoy (resp., dual McCoy) module if for nonzero f (X) is an element of R[X] and m(X) is an element of M[X], f (X) m(X) = 0 implies there exists a nonzero r is an element of R (resp., m is an element of M) with rm(X) = 0 (resp., f (X) m = 0). We show that for R commutative every R-module is dual McCoy, but give an example of a non-McCoy module. A number of other results concerning (dual) McCoy modules as well as arithmetical, Gaussian, and Armendariz modules are given.
引用
收藏
页码:2593 / 2601
页数:9
相关论文
共 41 条
  • [1] ON WEAK MCCOY MODULES OVER COMMUTATIVE RINGS
    Darani, Ahmad Yousefian
    Shabani, Masoumeh
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, (40): : 90 - 97
  • [2] On modules related to McCoy modules
    Baeck, Jongwook
    OPEN MATHEMATICS, 2022, 20 (01): : 1734 - 1752
  • [3] ON WEAK ARMENDARIZ MODULES OVER COMMUTATIVE RINGS
    Shabani, M.
    Darani, A. Yousefian
    MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) : 581 - 590
  • [4] NOTES ON ANNIHILATOR CONDITIONS IN MODULES OVER COMMUTATIVE RINGS
    Darani, Ahmad Yousefian
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2010, 18 (02): : 59 - 71
  • [5] On McCoy modules
    Cui, Jian
    Chen, Jianlong
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (01) : 23 - 33
  • [6] ASSOCIATED PRIMES AND PRIMAL DECOMPOSITION OF MODULES OVER COMMUTATIVE RINGS
    Khojali, Ahmad
    Naghipour, Reza
    COLLOQUIUM MATHEMATICUM, 2009, 114 (02) : 191 - 202
  • [7] PRIMALITY, IRREDUCIBILITY, AND COMPLETE IRREDUCIBILITY IN MODULES OVER COMMUTATIVE RINGS
    Albu, Toma
    Smith, Patrick F.
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 54 (04): : 275 - 286
  • [8] On α-skew McCoy modules
    Cui, Jian
    Chen, Jianlong
    TURKISH JOURNAL OF MATHEMATICS, 2012, 36 (02) : 217 - 229
  • [9] Notes on McCoy Modules
    Heqing ZHENG
    Zhi CHENG
    Xiaobin YIN
    JournalofMathematicalResearchwithApplications, 2018, 38 (03) : 247 - 252
  • [10] α-Skew π-McCoy Rings
    Abduldaim, Areej M.
    Chen, Sheng
    JOURNAL OF APPLIED MATHEMATICS, 2013,