Fractional-Order Memory Reset Control for Integer-Order LTI Systems

被引:0
|
作者
Weise, Christoph [1 ]
Wulff, Kai [1 ]
Reger, Johann [1 ]
机构
[1] Tech Univ Ilmenau, Control Engn Grp, POB 10 05 65, D-98684 Ilmenau, Germany
基金
欧盟地平线“2020”;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this contribution we consider the control of integer-order LTI systems by using a fractional-order controller. We show that these controllers lack exponential convergence and propose a periodic memory reset of the controller. Applying this controller the resulting closed-loop dynamics can be represented by a hybrid fractional-order system. Its stability is determined via the induced discrete system. The induced system guarantees exponential convergence and leads to an integer-order interpretation of the closed-loop dynamics for the lower frequency range.
引用
收藏
页码:5710 / 5715
页数:6
相关论文
共 50 条
  • [31] Circuit simulation for synchronization of a fractional-order and integer-order chaotic system
    Chen, Diyi
    Wu, Cong
    Iu, Herbert H. C.
    Ma, Xiaoyi
    NONLINEAR DYNAMICS, 2013, 73 (03) : 1671 - 1686
  • [32] Mass transport in brain cells: integer-order and fractional-order modeling
    Shit, Abhijit
    Bora, Swaroop Nandan
    PHYSICA SCRIPTA, 2025, 100 (01)
  • [33] Circuit simulation for synchronization of a fractional-order and integer-order chaotic system
    Diyi Chen
    Cong Wu
    Herbert H. C. Iu
    Xiaoyi Ma
    Nonlinear Dynamics, 2013, 73 : 1671 - 1686
  • [34] Synchronization of fractional-order and integer-order chaotic (hyper-chaotic) systems with different dimensions
    Xiaoyan Yang
    Heng Liu
    Shenggang Li
    Advances in Difference Equations, 2017
  • [35] Synchronization between Fractional-Order and Integer-Order Hyperchaotic Systems via Sliding Mode Controller
    Wu, Yan-Ping
    Wang, Guo-Dong
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [36] Synchronization of fractional-order and integer-order chaotic (hyper-chaotic) systems with different dimensions
    Yang, Xiaoyan
    Liu, Heng
    Li, Shenggang
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [37] Optimal Tuning for Fractional-Order Controllers: An Integer-Order Approximating Filter Approach
    Rahimian, Mohammad Amin
    Tavazoei, Mohammad Saleh
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2013, 135 (02):
  • [38] Fractional-order diffusion coupled with integer-order diffusion formultiplicative noise removal
    Li, Chengxue
    He, Chuanjiang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 136 : 34 - 43
  • [39] An Integer-Order Transfer Function Estimation Algorithm for Fractional-Order PID Controllers
    Bingi, Kishore
    Ibrahim, Rosdiazli
    Karsiti, Mohd Noh
    Hassan, Sabo Miya
    Harindran, Vivekananda Rajah
    INTERNATIONAL JOURNAL OF APPLIED METAHEURISTIC COMPUTING, 2020, 11 (03) : 133 - 150
  • [40] Novel Fractional-Order Difference Schemes Reducible to Standard Integer-Order Formulas
    Paskas, Milorad P.
    Reljin, Irini S.
    Reljin, Branimir D.
    IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (06) : 912 - 916