Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space

被引:122
作者
Bereanu, Cristian [1 ]
Jebelean, Petru [2 ]
Torres, Pedro J. [3 ]
机构
[1] Romanian Acad, Inst Math Simion Stoilow, RO-010702 Bucharest, Romania
[2] W Univ Timisoara, Dept Math, RO-300223 Timisoara, Romania
[3] Univ Granada, Dept Matemat Aplicada, E-18071 Granada, Spain
关键词
Dirichlet problem; Positive radial solutions; Mean curvature operator; Minkowski space; Leray-Schauder degree; Szulkin's critical point theory; ELLIPTIC-EQUATIONS; HYPERSURFACES; EXISTENCE; SURFACES;
D O I
10.1016/j.jfa.2012.10.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, by using Leray-Schauder degree arguments and critical point theory for convex, lower semicontinuous perturbations of C-1-functionals, we obtain existence of classical positive radial solutions for Dirichlet problems of type div(del v-root 1 - vertical bar del v vertical bar(2)) + f(vertical bar x vertical bar, v) = 0 in B(R), v = 0 on partial derivative B(R). Here, B(R) = {x is an element of R-N: vertical bar x vertical bar < R} and f : [0, R] x [0, alpha) -> R is a continuous function, which is positive on (0, R] x (0, alpha). (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:270 / 287
页数:18
相关论文
共 32 条
[1]   On the Gaussian curvature of maximal surfaces and the Calabi-Bernstein theorem [J].
Alías, LJ ;
Palmer, B .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 :454-458
[2]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[3]   SOLVABILITY FOR SOME BOUNDARY VALUE PROBLEMS WITH φ-LAPLACIAN OPERATORS [J].
Angel Cid, J. ;
Torres, Pedro J. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 23 (03) :727-732
[4]  
[Anonymous], 1985, NONLINEAR FUNCTIONAL
[5]   SPACELIKE HYPERSURFACES WITH PRESCRIBED BOUNDARY-VALUES AND MEAN-CURVATURE [J].
BARTNIK, R ;
SIMON, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 87 (01) :131-152
[6]  
Bereanu C, 2009, P AM MATH SOC, V137, P161
[7]  
Bereanu C., CALC VAR PARTIAL DIF
[8]   Variational methods for nonlinear perturbations of singular φ-Laplacians [J].
Bereanu, Cristian ;
Jebelean, Petru ;
Mawhin, Jean .
RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2011, 22 (01) :89-111
[9]   Radial solutions for Neumann problems involving mean curvature operators in Euclidean and Minkowski spaces [J].
Bereanu, Cristian ;
Jebelean, Petru ;
Mawhin, Jean .
MATHEMATISCHE NACHRICHTEN, 2010, 283 (03) :379-391
[10]  
Bidaut-Veron M.F., 1997, Differ. Integral Equ., V10, P1003