Dirichlet problem;
Positive radial solutions;
Mean curvature operator;
Minkowski space;
Leray-Schauder degree;
Szulkin's critical point theory;
ELLIPTIC-EQUATIONS;
HYPERSURFACES;
EXISTENCE;
SURFACES;
D O I:
10.1016/j.jfa.2012.10.010
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper, by using Leray-Schauder degree arguments and critical point theory for convex, lower semicontinuous perturbations of C-1-functionals, we obtain existence of classical positive radial solutions for Dirichlet problems of type div(del v-root 1 - vertical bar del v vertical bar(2)) + f(vertical bar x vertical bar, v) = 0 in B(R), v = 0 on partial derivative B(R). Here, B(R) = {x is an element of R-N: vertical bar x vertical bar < R} and f : [0, R] x [0, alpha) -> R is a continuous function, which is positive on (0, R] x (0, alpha). (C) 2012 Elsevier Inc. All rights reserved.