Synergistic Enhancement of Electrocatalytic Activity toward Oxygen Reduction Reaction in Alkaline Electrolytes with Pentabasic (Fe, B, N, S, P)-Doped Reduced Graphene Oxide

被引:14
作者
Chen, Wei [1 ]
Sin, Munil [1 ]
Wei, Ping-Jie [1 ]
Zhang, Qian-Ling [2 ]
Liu, Jin-Gang [1 ]
机构
[1] East China Univ Sci & Technol, Dept Chem, Shanghai 200237, Peoples R China
[2] Shenzhen Univ, Coll Chem & Environm Engn, Shenzhen Key Lab Funct Polymer, Shenzhen 518060, Guangdong, Peoples R China
关键词
oxygen reduction reaction; reduced graphene oxide; multiple dopant; electrocatalysis; METAL-FREE ELECTROCATALYST; HIGH-PERFORMANCE ELECTROCATALYSTS; NITROGEN-DOPED GRAPHENE; EFFICIENT ELECTROCATALYSTS; CARBON NANOFIBERS; FUEL-CELLS; PHOSPHORUS; BORON; COMPLEXES; CATALYST;
D O I
10.1002/cjoc.201600196
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As alternatives to Pt-based electrocatalysts, the development of nonprecious metal catalysts with high performance in the cathodic oxygen reduction reaction (ORR) is highly desirable for widespread use in fuel cells. Here we report a simple approach for preparing pentabasic (Fe, B, N, S, P)-doped reduced graphene oxide (rGO) via a two-step doping method of adding boric acid and ferric chloride to ternary (N, S, P)-doped rGO (NSPG). Electrochemical investigation of the composites for the ORR revealed that simultaneously doping appropriate amounts of Fe and B into the NSPG produced a synergistic effect that endowed the prepared catalyst with both a positively shifted ORR half-wave potential and high selectivity for the 4e(-) reduction of O-2. The optimized Fe2B-NSPG catalyst approached a 4e(-) process for the ORR with a half-wave potential (E-1/2=0.90 V vs. RHE) even 30 mV higher than that of the commercial Pt/C catalyst in alkaline solution. Furthermore, relative to the Pt/C catalyst, the Fe2B-NSPG demonstrated superior stability and excellent tolerance of the methanol cross-over effect. This simple method afforded pentabasic (Fe, B, N, S, P)-doped rGO as a promising nonprecious metal catalyst used for alkaline fuel cells.
引用
收藏
页码:878 / 886
页数:9
相关论文
共 48 条
[1]   Nitrogen and Sulfur Dual-Doped Non-Noble Catalyst Using Fluidic Acrylonitrile Telomer as Precursor for Efficient Oxygen Reduction [J].
Chang, Yuanqin ;
Hong, Fei ;
He, Chuanxin ;
Zhang, Qianling ;
Liu, Jianhong .
ADVANCED MATERIALS, 2013, 25 (34) :4794-4799
[2]   Aminothiazole-derived N,S,Fe-doped graphene nanosheets as high performance electrocatalysts for oxygen reduction [J].
Chen, Chi ;
Yang, Xiao-Dong ;
Zhou, Zhi-You ;
Lai, Yu-Jiao ;
Rauf, Muhammad ;
Wang, Ying ;
Pan, Jing ;
Zhuang, Lin ;
Wang, Qiang ;
Wang, Yu-Cheng ;
Tian, Na ;
Zhang, Xin-Sheng ;
Sun, Shi-Gang .
CHEMICAL COMMUNICATIONS, 2015, 51 (96) :17092-17095
[3]  
Chen P, 2014, ENERG ENVIRON SCI, V7, P4095, DOI [10.1039/c4ee02531h, 10.1039/C4EE02531H]
[4]   A Nitrogen-Doped Graphene/Carbon Nanotube Nanocomposite with Synergistically Enhanced Electrochemical Activity [J].
Chen, Ping ;
Xiao, Tian-Yuan ;
Qian, Yu-Hong ;
Li, Shan-Shan ;
Yu, Shu-Hong .
ADVANCED MATERIALS, 2013, 25 (23) :3192-3196
[5]   B, N- and P, N-doped graphene as highly active catalysts for oxygen reduction reactions in acidic media [J].
Choi, Chang Hyuck ;
Chung, Min Wook ;
Kwon, Han Chang ;
Park, Sung Hyeon ;
Woo, Seong Ihl .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (11) :3694-3699
[6]   Binary and Ternary Doping of Nitrogen, Boron, and Phosphorus into Carbon for Enhancing Electrochemical Oxygen Reduction Activity [J].
Choi, Chang Hyuck ;
Park, Sung Hyeon ;
Woo, Seong Ihl .
ACS NANO, 2012, 6 (08) :7084-7091
[7]   Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis [J].
Dou, Shuo ;
Tao, Li ;
Huo, Jia ;
Wang, Shuangyin ;
Dai, Liming .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (04) :1320-1326
[8]   N-, P- and S-tridoped graphene as metal-free electrocatalyst for oxygen reduction reaction [J].
Dou, Shuo ;
Shen, Anli ;
Ma, Zhaoling ;
Wu, Jianghong ;
Tao, Li ;
Wang, Shuangyin .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2015, 753 :21-27
[9]   Boron- and Nitrogen-Doped Graphene Quantum Dots/Graphene Hybrid Nanoplatelets as Efficient Electrocatalysts for Oxygen Reduction [J].
Fei, Huilong ;
Ye, Ruquan ;
Ye, Gonglan ;
Gong, Yongji ;
Peng, Zhiwei ;
Fan, Xiujun ;
Samuel, Errol L. G. ;
Ajayan, Pulickel M. ;
Tour, James M. .
ACS NANO, 2014, 8 (10) :10837-10843
[10]   Potential of metal-free "graphene alloy" as electrocatalysts for oxygen reduction reaction [J].
Geng, Dongsheng ;
Ding, Ning ;
Hor, T. S. Andy ;
Liu, Zhaolin ;
Sun, Xueliang ;
Zong, Yun .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (05) :1795-1810