Quadratic PT-symmetric operators with real spectrum and similarity to self-adjoint operators

被引:21
作者
Caliceti, Emanuela [1 ]
Graffi, Sandro [1 ]
Hitrik, Michael [2 ]
Sjoestrand, Johannes [3 ]
机构
[1] Univ Bologna, Dipartmento Matemat, I-40127 Bologna, Italy
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[3] Univ Bourgogne, IMB, CNRS UMR 5584 9, FR-21078 Dijon, France
关键词
NON-DIAGONALIZABLE HAMILTONIANS; NON-HERMITIAN HAMILTONIANS; PSEUDO-HERMITICITY; QUANTUM-MECHANICS; RESONANCES;
D O I
10.1088/1751-8113/45/44/444007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is established that a PT-symmetric elliptic quadratic differential operator with real spectrum is similar to a self-adjoint operator precisely when the associated fundamental matrix has no Jordan blocks.
引用
收藏
页数:20
相关论文
共 31 条
[1]   Non-linear supersymmetry for non-hermitian, non-diagonalizable Hamiltonians: I. General properties [J].
Andrianov, A. A. ;
Cannata, F. ;
Sokolov, A. V. .
NUCLEAR PHYSICS B, 2007, 773 (03) :107-136
[2]  
[Anonymous], 1985, ANAL PARTIAL DIFFERE
[3]   Nonlinear pseudo-bosons versus hidden Hermiticity: II. The case of unbounded operators [J].
Bagarello, Fabio ;
Znojil, Miloslav .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (11)
[5]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[6]   PT-symmetric quantum mechanics [J].
Bender, CM ;
Boettcher, S ;
Meisinger, PN .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) :2201-2229
[7]   PT symmetric non-self-adjoint operators, diagonalizable and non-diagonalizable, with a real discrete spectrum [J].
Caliceti, Emanuela ;
Graffi, Sandro ;
Sjostrand, Johannes .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (33) :10155-10170
[8]   Exactly solvable nonseparable and nondiagonalizable two-dimensional model with quadratic complex interaction [J].
Cannata, F. ;
Ioffe, M. V. ;
Nishnianidze, D. N. .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (02)
[9]   Pseudo-spectra, the harmonic oscillator and complex resonances [J].
Davies, EB .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455 (1982) :585-599
[10]  
DEMONVEL LB, 1974, COMMUN PUR APPL MATH, V27