Identification of potential blood biomarkers for early diagnosis of Alzheimer's disease through RNA sequencing analysis

被引:63
作者
Shigemizu, Daichi [1 ,2 ,3 ]
Mori, Taiki [1 ]
Akiyama, Shintaro [1 ]
Higaki, Sayuri [1 ]
Watanabe, Hiroshi [1 ]
Sakurai, Takashi [4 ,5 ]
Niida, Shumpei [1 ]
Ozaki, Kouichi [1 ,3 ]
机构
[1] Natl Ctr Geriatr & Gerontol, Med Genome Ctr, 7-430 Morioka Cho, Obu, Aichi 4748511, Japan
[2] Tokyo Med & Dent Univ TMDU, Med Res Inst, Dept Med Sci Math, Tokyo 1138510, Japan
[3] RIKEN, Ctr Integrat Med Sci, Yokohama, Kanagawa 2300045, Japan
[4] Natl Ctr Geriatr & Gerontol, Ctr Comprehens Care & Res Memory Disorders, Obu, Aichi 4748511, Japan
[5] Nagoya Univ, Dept Cognit & Behav Sci, Grad Sch Med, Nagoya, Aichi 4668550, Japan
关键词
Alzheimer's disease; RNA sequencing; Biomarkers for early diagnosis; MILD COGNITIVE IMPAIRMENT; GENE-EXPRESSION; DIFFERENTIAL EXPRESSION; ASSOCIATION WORKGROUPS; NATIONAL INSTITUTE; TAU; RECOMMENDATIONS; METAANALYSIS; GUIDELINES; PROTEINS;
D O I
10.1186/s13195-020-00654-x
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background With demographic shifts toward older populations, the number of people with dementia is steadily increasing. Alzheimer's disease (AD) is the most common cause of dementia, and no curative treatment is available. The current best strategy is to delay disease progression and to practice early intervention to reduce the number of patients that ultimately develop AD. Therefore, promising novel biomarkers for early diagnosis are urgently required. Methods To identify blood-based biomarkers for early diagnosis of AD, we performed RNA sequencing (RNA-seq) analysis of 610 blood samples, representing 271 patients with AD, 91 cognitively normal (CN) adults, and 248 subjects with mild cognitive impairment (MCI). We first estimated cell-type proportions among AD, MCI, and CN samples from the bulk RNA-seq data using CIBERSORT and then examined the differentially expressed genes (DEGs) between AD and CN samples. To gain further insight into the biological functions of the DEGs, we performed gene set enrichment analysis (GSEA) and network-based meta-analysis. Results In the cell-type distribution analysis, we found a significant association between the proportion of neutrophils and AD prognosis at a false discovery rate (FDR) < 0.05. Furthermore, a similar trend emerged in the results of routine blood tests from a large number of samples (n = 3,099: AD, 1,605; MCI, 994; CN, 500). In addition, GSEA and network-based meta-analysis based on DEGs between AD and CN samples revealed functional modules and important hub genes associated with the pathogenesis of AD. The risk prediction model constructed by using the proportion of neutrophils and the most important hub genes (EEF2andRPL7) achieved a high AUC of 0.878 in a validation cohort; when further applied to a prospective cohort, the model achieved a high accuracy of 0.727. Conclusions Our model was demonstrated to be effective in prospective AD risk prediction. These findings indicate the discovery of potential biomarkers for early diagnosis of AD, and their further improvement may lead to future practical clinical use.
引用
收藏
页数:12
相关论文
共 56 条
[11]   STAR: ultrafast universal RNA-seq aligner [J].
Dobin, Alexander ;
Davis, Carrie A. ;
Schlesinger, Felix ;
Drenkow, Jorg ;
Zaleski, Chris ;
Jha, Sonali ;
Batut, Philippe ;
Chaisson, Mark ;
Gingeras, Thomas R. .
BIOINFORMATICS, 2013, 29 (01) :15-21
[12]   Neutrophil hyperactivation correlates with Alzheimer's disease progression [J].
Dong, Yuan ;
Lagarde, Julien ;
Xicota, Laura ;
Corne, Helene ;
Chantran, Yannick ;
Chaigneau, Thomas ;
Crestani, Bruno ;
Bottlaender, Michel ;
Potier, Marie-Claude ;
Aucouturier, Pierre ;
Dorothee, Guillaume ;
Sarazin, Marie ;
Elbim, Carole .
ANNALS OF NEUROLOGY, 2018, 83 (02) :387-405
[13]   Genetics of gene expression and its effect on disease [J].
Emilsson, Valur ;
Thorleifsson, Gudmar ;
Zhang, Bin ;
Leonardson, Amy S. ;
Zink, Florian ;
Zhu, Jun ;
Carlson, Sonia ;
Helgason, Agnar ;
Walters, G. Bragi ;
Gunnarsdottir, Steinunn ;
Mouy, Magali ;
Steinthorsdottir, Valgerdur ;
Eiriksdottir, Gudrun H. ;
Bjornsdottir, Gyda ;
Reynisdottir, Inga ;
Gudbjartsson, Daniel ;
Helgadottir, Anna ;
Jonasdottir, Aslaug ;
Jonasdottir, Adalbjorg ;
Styrkarsdottir, Unnur ;
Gretarsdottir, Solveig ;
Magnusson, Kristinn P. ;
Stefansson, Hreinn ;
Fossdal, Ragnheidur ;
Kristjansson, Kristleifur ;
Gislason, Hjortur G. ;
Stefansson, Tryggvi ;
Leifsson, Bjorn G. ;
Thorsteinsdottir, Unnur ;
Lamb, John R. ;
Gulcher, Jeffrey R. ;
Reitman, Marc L. ;
Kong, Augustine ;
Schadt, Eric E. ;
Stefansson, Kari .
NATURE, 2008, 452 (7186) :423-U2
[14]   Comparison of Analytical Platforms for Cerebrospinal Fluid Measures of β-Amyloid 1-42, Total tau, and P-tau181 for Identifying Alzheimer Disease Amyloid Plaque Pathology [J].
Fagan, Anne M. ;
Shaw, Leslie M. ;
Xiong, Chengjie ;
Vanderstichele, Hugo ;
Mintun, Mark A. ;
Trojanowski, John Q. ;
Coart, Els ;
Morris, John C. ;
Holtzman, David M. .
ARCHIVES OF NEUROLOGY, 2011, 68 (09) :1137-1144
[15]   RNA granules: The good, the bad and the ugly [J].
Gabriela Thomas, Maria ;
Loschi, Mariela ;
Andrea Desbats, Maria ;
Lidia Boccaccio, Graciela .
CELLULAR SIGNALLING, 2011, 23 (02) :324-334
[16]   Memory Impairment and Executive Dysfunction are Associated with Inadequately Controlled Diabetes in Older Adults [J].
Grober, Ellen ;
Hall, Charles B. ;
Hahn, Steven R. ;
Lipton, Richard B. .
JOURNAL OF PRIMARY CARE AND COMMUNITY HEALTH, 2011, 2 (04) :229-233
[17]   Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources [J].
Huang, Da Wei ;
Sherman, Brad T. ;
Lempicki, Richard A. .
NATURE PROTOCOLS, 2009, 4 (01) :44-57
[18]   Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists [J].
Huang, Da Wei ;
Sherman, Brad T. ;
Lempicki, Richard A. .
NUCLEIC ACIDS RESEARCH, 2009, 37 (01) :1-13
[19]   Plasma P-tau181 in Alzheimer's disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer's dementia [J].
Janelidze, Shorena ;
Mattsson, Niklas ;
Palmqvist, Sebastian ;
Smith, Ruben ;
Beach, Thomas G. ;
Serrano, Geidy E. ;
Chai, Xiyun ;
Proctor, Nicholas K. ;
Eichenlaub, Udo ;
Zetterberg, Henrik ;
Blennow, Kaj ;
Reiman, Eric M. ;
Stomrud, Erik ;
Dage, Jeffrey L. ;
Hansson, Oskar .
NATURE MEDICINE, 2020, 26 (03) :379-+
[20]   Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer's disease risk [J].
Jansen, Iris E. ;
Savage, Jeanne E. ;
Watanabe, Kyoko ;
Bryois, Julien ;
Williams, Dylan M. ;
Steinberg, Stacy ;
Sealock, Julia ;
Karlsson, Ida K. ;
Hagg, Sara ;
Athanasiu, Lavinia ;
Voyle, Nicola ;
Proitsi, Petroula ;
Witoelar, Aree ;
Stringer, Sven ;
Aarsland, Dag ;
Almdahl, Ina S. ;
Andersen, Fred ;
Bergh, Sverre ;
Bettella, Francesco ;
Bjornsson, Sigurbjorn ;
Braekhus, Anne ;
Brathen, Geir ;
de Leeuw, Christiaan ;
Desikan, Rahul S. ;
Djurovic, Srdjan ;
Dumitrescu, Logan ;
Fladby, Tormod ;
Hohman, Timothy J. ;
Jonsson, Palmi, V ;
Kiddle, Steven J. ;
Rongve, Arvid ;
Saltvedt, Ingvild ;
Sando, Sigrid B. ;
Selbaek, Geir ;
Shoai, Maryam ;
Skene, Nathan G. ;
Snaedal, Jon ;
Stordal, Eystein ;
Ulstein, Ingun D. ;
Wang, Yunpeng ;
White, Linda R. ;
Hardy, John ;
Hjerling-Leffler, Jens ;
Sullivan, Patrick F. ;
van der Flier, Wiesje M. ;
Dobson, Richard ;
Davis, Lea K. ;
Stefansson, Hreinn ;
Stefansson, Kari ;
Pedersen, Nancy L. .
NATURE GENETICS, 2019, 51 (03) :404-+