Inhibitory mechanisms of flavonoids on insulin-stimulated glucose uptake in MC3T3-G2/PA6 adipose cells

被引:111
作者
Nomura, Masaaki [3 ]
Takahashi, Tatsuo [3 ]
Nagata, Naoto [1 ]
Tsutsumi, Kikue [1 ]
Kobayashi, Shinjiro [3 ,4 ]
Akiba, Tetsuo [2 ]
Yokogawa, Koichi [1 ,2 ]
Moritani, Shuzo [5 ]
Miyamoto, Ken-ichi [1 ,2 ]
机构
[1] Kanazawa Univ, Sch Med, Dept Hosp Pharm, Kanazawa, Ishikawa 9208641, Japan
[2] Kanazawa Univ, Grad Sch Med Sci, Dept Med Informat, Kanazawa, Ishikawa 9208641, Japan
[3] Hokuriku Univ, Fac Pharmaceut Sci, Dept Clin Pharmacol, Kanazawa, Ishikawa 9201181, Japan
[4] Hokuriku Univ, Org Frontier Res Prevent Pharmaceut Sci, Kanazawa, Ishikawa 9201181, Japan
[5] Fukui Prefectural Univ, Fac Nursing & Welf, Dept Nursing, Fukui 9101195, Japan
关键词
flavonoid; adipocyte; glucose uptake; insulin; Akt; glucose transporter 4;
D O I
10.1248/bpb.31.1403
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
We assessed the effects of different classes of flavonoids on insulin-stimulated 2-deoxy-D-[1-H-3]glucose uptake by mouse MC3T3-G2/PA6 cells differentiated into mature adipose cells. Among the flavonoids examined, the flavones, apigenin and luteolin, the flavonols, kaempferol, quercetin and fisetin, an isoflavone, genistein, a flavanonol, silybin, and the flavanols, (-)-epigallocatechin gallate (EGCG) and theaflavins, significantly inhibited insulin-stimulated glucose uptake. Key structural features of flavonoids for inhibition of insulin-stimulated glucose uptake are the B-ring 4'- or 3',4'-OH group and the C-ring C2-C3 double bond of the flavones and flavonols, the A-ring 5-OH of isoflavones, and the galloyl group of EGCG and theaflavins. Luteolin significantly inhibits insulin-stimulated phosphorylation of insulin receptor-beta subunit (IR-beta), and apigenin, kaempferol, quercetin and fisetin, also tended to inhibit the IR-beta phosphorylation. On the other hand, isoflavones, flavanols or flavanonols did not affect insulin-stimulated IR-beta phosphorylation. Apigenin, luteolin, kaempferol, quercetin and fisetin also appeared to inhibit insulin-stimulated activation of Akt, a pivotal downstream effector of phosphatidylinositol 3-kinase (PI3K), and suppressed insulin-dependent translocation of a glucose transporter, (GLUT)4, into the plasma membrane. Although genistein, silybin, EGCG and theaflavins had no effect on the insulin-stimulated activation of Akt, they blocked insulin-dependent GLUT4 translocation. These results provide novel insights into the modulation by flavonoids of insulin's actions, including glucose uptake in adipocytes.
引用
收藏
页码:1403 / 1409
页数:7
相关论文
共 37 条
[1]   Relationship between flavonoid structure and inhibition of phosphatidylinositol 3-kinase: A comparison with tyrosine kinase and protein kinase C inhibition [J].
Agullo, G ;
GametPayrastre, L ;
Manenti, S ;
Viala, C ;
Remesy, C ;
Chap, H ;
Payrastre, B .
BIOCHEMICAL PHARMACOLOGY, 1997, 53 (11) :1649-1657
[2]   Inhibitory mechanism of caffeine on insulin-stimulated glucose uptake in adipose cells [J].
Akiba, T ;
Yaguchi, K ;
Tsutsumi, K ;
Nishioka, T ;
Koyama, I ;
Nomura, M ;
Yokogawa, K ;
Moritani, S ;
Miyamoto, K .
BIOCHEMICAL PHARMACOLOGY, 2004, 68 (10) :1929-1937
[3]  
AKIYAMA T, 1987, J BIOL CHEM, V262, P5592
[4]   Genistein directly inhibits GLUT4-mediated glucose uptake in 3T3-L1 adipocytes [J].
Bazuine, M ;
van den Broek, PJA ;
Maassen, JA .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2005, 326 (02) :511-514
[5]   SELECTIVE-INHIBITION OF A CYCLIC-NUCLEOTIDE INDEPENDENT PROTEIN-KINASE (G-TYPE CASEIN KINASE) BY QUERCETIN AND RELATED POLYPHENOLS [J].
COCHET, C ;
FEIGE, JJ ;
PIROLLET, F ;
KERAMIDAS, M ;
CHAMBAZ, EM .
BIOCHEMICAL PHARMACOLOGY, 1982, 31 (07) :1357-1361
[6]  
Crozier A, 2000, BIOL RES, V33, P79
[7]   REPLACEMENT OF INSULIN-RECEPTOR TYROSINE RESIDUES 1162 AND 1163 COMPROMISES INSULIN-STIMULATED KINASE-ACTIVITY AND UPTAKE OF 2-DEOXYGLUCOSE [J].
ELLIS, L ;
CLAUSER, E ;
MORGAN, DO ;
EDERY, M ;
ROTH, RA ;
RUTTER, WJ .
CELL, 1986, 45 (05) :721-732
[8]   PROTEIN-KINASE C INHIBITION BY PLANT FLAVONOIDS - KINETIC MECHANISMS AND STRUCTURE-ACTIVITY-RELATIONSHIPS [J].
FERRIOLA, PC ;
CODY, V ;
MIDDLETON, E .
BIOCHEMICAL PHARMACOLOGY, 1989, 38 (10) :1617-1624
[9]  
HAGIWARA M, 1988, BIOCHEM PHARMACOL, V37, P2987
[10]   Protein kinase B (PKB/Akt) - a key regulator of glucose transport? [J].
Hajduch, E ;
Litherland, GJ ;
Hundal, HS .
FEBS LETTERS, 2001, 492 (03) :199-203