VHDL Generator for A High Performance Convolutional Neural Network FPGA-Based Accelerator

被引:0
|
作者
Hamdan, Muhammad K. [1 ]
Rover, Diane T. [1 ]
机构
[1] Iowa State Univ Sci & Technol, Elect & Comp Engn Dept, Ames, IA 50011 USA
关键词
VHDL generator; CNNs; AlexNet; parallelism; reconfigurable; adaptability; pipeline; scalable; FPGA; COPROCESSOR;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Convolutional Neural Network (CNN) has been proven as a highly accurate and effective algorithm that has been used in a variety of applications such as handwriting digit recognition, visual recognition, and image classification. As a matter of fact, state-of-the-art CNNs are computationally intensive; however, their parallel and modular nature make platforms like FPGAs well suited for the acceleration process. A typical CNN takes a very long development round on FPGAs, hence in this paper, we propose a tool which allows developers, through a configurable user-interface, to automatically generate VHDL code for their desired CNN model. The generated code or architecture is modular, massively parallel, reconfigurable, scalable, fully pipelined, and adaptive to different CNN models. We demonstrate the automatic VHDL generator and its adaptability by implementing a small-scale CNN model "LeNet" and a large-scale one "AlexNet". The parameters of small scale models are automatically hard-coded as constants (part of the programmable logic) to overcome the memory bottleneck issue. On a Xilinx Virtex-7 running at 200 MHz, the system is capable of processing up to 125k images/s of size 28x28 for LeNet and achieved a peak performance of 611.52 GOP/s and 414 FPS for AlexNet.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Modulation recognition using an FPGA-based convolutional neural network
    Liu, Xueyuan
    Shang, Jing
    Leong, Philip H. W.
    Liu, Cheng
    2019 22ND INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS 2019), 2019, : 3165 - 3170
  • [42] FFConv: An FPGA-based Accelerator for Fast Convolution Layers in Convolutional Neural Networks
    Ahmad, Afzal
    Pasha, Muhammad Adeel
    ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS, 2020, 19 (02)
  • [43] An Efficient Convolutional Neural Network Accelerator on FPGA
    Si, Junye
    Jiang, Jianfei
    Wang, Qin
    Huang, Jia
    2018 14TH IEEE INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED CIRCUIT TECHNOLOGY (ICSICT), 2018, : 1392 - 1394
  • [44] LW-GCN: A Lightweight FPGA-based Graph Convolutional Network Accelerator
    Tao, Zhuofu
    Wu, Chen
    Liang, Yuan
    Wang, Kun
    He, Lei
    ACM TRANSACTIONS ON RECONFIGURABLE TECHNOLOGY AND SYSTEMS, 2023, 16 (01)
  • [45] An FPGA-based accelerator for deep neural network with novel reconfigurable architecture
    Jia, Han
    Ren, Daming
    Zou, Xuecheng
    IEICE ELECTRONICS EXPRESS, 2021, 18 (04):
  • [46] A FPGA-based Hardware Accelerator for Bayesian Confidence Propagation Neural Network
    Liu, Lizheng
    Wang, Deyu
    Wang, Yuning
    Lansner, Anders
    Hemani, Ahmed
    Yang, Yu
    Hu, Xiaoming
    Zou, Zhuo
    Zheng, Lirong
    2020 IEEE NORDIC CIRCUITS AND SYSTEMS CONFERENCE (NORCAS), 2020,
  • [47] An FPGA-based Accelerator for Analog VLSI Artificial Neural Network Emulation
    van Liempd, Barend
    Herrera, Daniel
    Figueroa, Miguel
    13TH EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN: ARCHITECTURES, METHODS AND TOOLS, 2010, : 771 - 778
  • [48] FPGA-Based Convolutional Neural Network Accelerator with Resource-Optimized Approximate Multiply-Accumulate Unit
    Cho, Mannhee
    Kim, Youngmin
    ELECTRONICS, 2021, 10 (22)
  • [49] A High-performance FPGA-based Accelerator for Gradient Compression
    Ren, Qingqing
    Zhu, Shuyong
    Meng, Xuying
    Zhang, Yujun
    DCC 2022: 2022 DATA COMPRESSION CONFERENCE (DCC), 2022, : 429 - 438
  • [50] Optimizing FPGA-based Convolutional Neural Networks Accelerator for Image Super-Resolution
    Chang, Jung-Woo
    Kang, Suk-Ju
    2018 23RD ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE (ASP-DAC), 2018, : 343 - 348