Handwritten Digit Recognition Based on LS-SVM

被引:0
作者
Zhao, Xiaoming [1 ]
Zhang, Shiqing [2 ]
机构
[1] Taizhou Univ, Dept Comp Sci, Taizhou 318000, Peoples R China
[2] Taizhou Univ, Sch Phys & Elect Engn, Taizhou 318000, Peoples R China
来源
ADVANCES IN FUTURE COMPUTER AND CONTROL SYSTEMS, VOL 1 | 2012年 / 159卷
关键词
Handwritten digit recognition; Principal component analysis; Least squares support vector machines;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present a method of handwritten digit recognition based on least squares support vector machines (LS-SVM). Principal component analysis (PCA) is used to extract 10-dimension features from the original digit images for handwritten digit recognition. The performance of LS-SVM on handwritten digit recognition tasks is compared with three typical classification methods, including linear discriminant classifiers (LDC), the nearest neighbor (NN), and the back-propagation neural network (BPNN). The experimental results on the popular MNIST database indicate that LS-SVM obtains the best accuracy of 87.5% with 10-dimension features, outperforming the other used methods.
引用
收藏
页码:483 / +
页数:2
相关论文
共 9 条
[1]  
[Anonymous], 2000, NATURE STAT LEARNING, DOI DOI 10.1007/978-1-4757-3264-1
[2]  
Hossain M. Z., 2011, Proceedings of the 2011 International Conference on Machine Learning and Cybernetics (ICMLC 2011), P1832, DOI 10.1109/ICMLC.2011.6017001
[3]   Statistical pattern recognition: A review [J].
Jain, AK ;
Duin, RPW ;
Mao, JC .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2000, 22 (01) :4-37
[4]   A modal learning adaptive function neural network applied to handwritten digit recognition [J].
Kang, Miao ;
Palmer-Brown, Dominic .
INFORMATION SCIENCES, 2008, 178 (20) :3802-3812
[5]   A trainable feature extractor for handwritten digit recognition [J].
Lauer, Fabien ;
Suen, Ching Y. ;
Bloch, Gerard .
PATTERN RECOGNITION, 2007, 40 (06) :1816-1824
[6]  
LeCun Y.A., 1995, INT C ART NEUR NETW, V2, P53
[7]  
Trier OD, 1996, PATTERN RECOGN, V29, P641, DOI 10.1016/0031-3203(95)00118-2
[8]  
Turk M. A., 1991, Proceedings 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (91CH2983-5), P586, DOI 10.1109/CVPR.1991.139758
[9]  
Van Gestel T., 2002, Least Squares Support Vector Machines