Stabilized Multiscale Nonconforming Finite Element Method for the Stationary Navier-Stokes Equations

被引:0
|
作者
Zhang, Tong [1 ]
Xu, Shunwei [1 ]
Deng, Jien [1 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454003, Peoples R China
关键词
PRESSURE STABILIZATION; ENRICHMENT;
D O I
10.1155/2012/651808
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a stabilized multiscale nonconforming finite element method for the two-dimensional stationary incompressible Navier-Stokes problem. This method is based on the enrichment of the standard polynomial space for the velocity component with multiscale function and the nonconforming lowest equal-order finite element pair. Stability and existence uniqueness of the numerical solution are established, optimal-order error estimates are also presented. Finally, some numerical results are presented to validate the performance of the proposed method.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Analysis of a pressure-stabilized finite element approximation of the stationary Navier-Stokes equations
    Ramon Codina
    Jordi Blasco
    Numerische Mathematik, 2000, 87 : 59 - 81
  • [42] Analysis of a pressure-stabilized finite element approximation of the stationary Navier-Stokes equations
    Codina, R
    Blasco, J
    NUMERISCHE MATHEMATIK, 2000, 87 (01) : 59 - 81
  • [43] Adaptive discretization of stationary and incompressible Navier-Stokes equations by stabilized finite element methods
    Berrone, S
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (34) : 4435 - 4455
  • [44] Finite element error analysis of a variational multiscale method for the Navier-Stokes equations
    John V.
    Kaya S.
    Advances in Computational Mathematics, 2008, 28 (1) : 43 - 61
  • [45] A NONCONFORMING FINITE-ELEMENT METHOD OF UPSTREAM TYPE APPLIED TO THE STATIONARY NAVIER-STOKES EQUATION
    SCHIEWECK, F
    TOBISKA, L
    RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1989, 23 (04): : 627 - 647
  • [46] Iterative finite element variational multiscale method for the incompressible Navier-Stokes equations
    Zhang, Yamiao
    Zhang, Jiazhong
    Zhu, Lianning
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 340 : 53 - 70
  • [47] A Multiscale Finite Element Formulation for the Incompressible Navier-Stokes Equations
    Baptista, Riedson
    Bento, Sergio S.
    Santos, Isaac P.
    Lima, Leonardo M.
    Valli, Andrea M. P.
    Catabriga, Lucia
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS (ICCSA 2018), PT II, 2018, 10961 : 253 - 267
  • [48] Stabilized finite element method for Navier-Stokes equations with physical boundary conditions
    Amara, M.
    Capatina-Papaghiuc, D.
    Trujillo, D.
    MATHEMATICS OF COMPUTATION, 2007, 76 (259) : 1195 - 1217
  • [49] The stabilized extrapolated trapezoidal finite-element method for the Navier-Stokes equations
    Labovsky, Alexandr
    Layton, William J.
    Manica, Carolina C.
    Neda, Monika
    Rebholz, Leo G.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (9-12) : 958 - 974
  • [50] Comparative Study of Space Iteration Methods Based on Nonconforming Finite Element for Stationary Navier-Stokes Equations
    Gao, Jiawei
    Li, Jian
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2022, 12 (03) : 628 - 648