Buckling of multiwalled carbon nanotubes under axial compression

被引:138
作者
Sears, A [1 ]
Batra, RC [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Engn Sci & Mech, Blacksburg, VA 24061 USA
关键词
D O I
10.1103/PhysRevB.73.085410
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Buckling of single-walled and multiwalled carbon nanotubes (SWNTs and MWNTs, respectively) due to axial compressive loads has been studied by molecular mechanics simulations, and results compared with those from the analysis of equivalent continuum structures using Euler buckling theory and the finite element method. It is found that a MWNT of large aspect ratio (length/diameter) buckles as a column with axial strain at buckling given reasonably well by the Euler buckling theory applied to the equivalent continuum structure. However, a MWNT of low aspect ratio buckles in shell wall buckling mode with the axial strain at buckling corresponding to the highest axial strain at buckling of one of its constituent SWNTs. A finite element model has been developed that simulates van der Waals forces by truss elements connecting nodes on adjacent walls of a MWNT; the axial strain at buckling from it is close to that obtained from the MM simulations but the two sets of mode shapes are different.
引用
收藏
页数:11
相关论文
共 28 条
  • [1] MOLECULAR MECHANICS - THE MM3 FORCE-FIELD FOR HYDROCARBONS .1.
    ALLINGER, NL
    YUH, YH
    LII, JH
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1989, 111 (23) : 8551 - 8566
  • [2] Finite element methods for the non-linear mechanics of crystalline sheets and nanotubes
    Arroyo, M
    Belytschko, T
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 59 (03) : 419 - 456
  • [3] BATRA RC, UNPUB
  • [4] Deformation of carbon nanotubes in nanotube-polymer composites
    Bower, C
    Rosen, R
    Jin, L
    Han, J
    Zhou, O
    [J]. APPLIED PHYSICS LETTERS, 1999, 74 (22) : 3317 - 3319
  • [5] CAIRNS DS, UNPUB
  • [6] Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes
    Cumings, J
    Zettl, A
    [J]. SCIENCE, 2000, 289 (5479) : 602 - 604
  • [7] FLEXIBILITY OF GRAPHENE LAYERS IN CARBON NANOTUBES
    DESPRES, JF
    DAGUERRE, E
    LAFDI, K
    [J]. CARBON, 1995, 33 (01) : 87 - 89
  • [8] Bending and buckling of carbon nanotubes under large strain
    Falvo, MR
    Clary, GJ
    Taylor, RM
    Chi, V
    Brooks, FP
    Washburn, S
    Superfine, R
    [J]. NATURE, 1997, 389 (6651) : 582 - 584
  • [9] Nanomechanics of single and multiwalled carbon nanotubes
    Liew, KM
    Wong, CH
    He, XQ
    Tan, MJ
    Meguid, SA
    [J]. PHYSICAL REVIEW B, 2004, 69 (11)
  • [10] Buckling and collapse of embedded carbon nanotubes
    Lourie, O
    Cox, DM
    Wagner, HD
    [J]. PHYSICAL REVIEW LETTERS, 1998, 81 (08) : 1638 - 1641