Longitudinal Aging Study in India (LASI): new data resources for addressing aging in India

被引:67
作者
Bloom, David E. [1 ]
Sekher, T. V. [2 ]
Lee, Jinkook [3 ]
机构
[1] Harvard TH Chan Sch Publ Hlth, Boston, MA 02115 USA
[2] Int Inst Populat Sci, Mumbai, India
[3] Univ Southern Calif, Los Angeles, CA USA
来源
NATURE AGING | 2021年 / 1卷 / 12期
基金
美国国家卫生研究院;
关键词
D O I
10.1038/s43587-021-00155-y
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The Longitudinal Aging Study in India (LASI), the largest national health and retirement study in the world, released its wave 1 microdata earlier this year. The principal investigators of LASI introduce the study and explain how it can advance aging research in India and beyond in response to the impending challenges of rapid population aging.
引用
收藏
页码:1070 / 1072
页数:3
相关论文
共 15 条
  • [1] Sex Differences in Cognitive Health Among Older Adults in India
    Angrisani, Marco
    Jain, Urvashi
    Lee, Jinkook
    [J]. JOURNAL OF THE AMERICAN GERIATRICS SOCIETY, 2020, 68 : S20 - S28
  • [2] [Anonymous], 2019, Department of Economic and Social Affairs. World Population Prospects 2019, V141, P1
  • [3] Bloom D., 2021, Addressing Alzheimer's disease and related dementias to realise the promise of the UN's 'Decade of Healthy Ageing'
  • [4] The Association of Cognitive and Visual Function in a Nationally Representative Study of Older Adults in India
    Ehrlicha, Joshua R.
    Ndukwe, Tochukwu
    Chien, Sandy
    Lee, Jinkook
    [J]. NEUROEPIDEMIOLOGY, 2021, 55 (02) : 126 - 134
  • [5] Giridhar G, 2014, POPULATION AGEING IN INDIA, pXVII
  • [6] International Institute for Population Sciences (IIPS) NPHCE MoHFW Harvard T. H. Chan School of Public Health (HSPH) and the University of Southern California (USC), 2020, Longitudinal Ageing Study in India (LASI) Wave 1, 2017-18, India Report
  • [7] The cost of Alzheimer's disease in China and re-estimation of costs worldwide
    Jia, Jianping
    Wei, Cuibai
    Chen, Shuoqi
    Li, Fangyu
    Tang, Yi
    Qin, Wei
    Zhao, Lina
    Jin, Hongmei
    Xu, Hui
    Wang, Fen
    Zhou, Aihong
    Zuo, Xiumei
    Wu, Liyong
    Han, Ying
    Han, Yue
    Huang, Liyuan
    Wang, Qi
    Li, Dan
    Chu, Changbiao
    Shi, Lu
    Gong, Min
    Du, Yifeng
    Zhang, Jiewen
    Zhang, Junjian
    Zhou, Chunkui
    Lv, Jihui
    Lv, Yang
    Xie, Haiqun
    Ji, Yong
    Li, Fang
    Yu, Enyan
    Luo, Benyan
    Wang, Yanjiang
    Yang, Shanshan
    Qu, Qiumin
    Guo, Qihao
    Liang, Furu
    Zhang, Jintao
    Tan, Lan
    Shen, Lu
    Zhang, Kunnan
    Zhang, Jinbiao
    Peng, Dantao
    Tang, Muni
    Lv, Peiyuan
    Fang, Boyan
    Chu, Lan
    Jia, Longfei
    Gauthier, Serge
    [J]. ALZHEIMERS & DEMENTIA, 2018, 14 (04) : 483 - 491
  • [8] Learning From Clinical Consensus Diagnosis in India to Facilitate Automatic Classification of Dementia: Machine Learning Study
    Jin, Haomiao
    Chien, Sandy
    Meijer, Erik
    Khobragade, Pranali
    Lee, Jinkook
    [J]. JMIR MENTAL HEALTH, 2021, 8 (05):
  • [9] Lee JC., PLoS Med
  • [10] Introduction to LASI-DAD: The Longitudinal Aging Study in India-Diagnostic Assessment of Dementia
    Lee, Jinkook
    Dey, Aparajit B.
    [J]. JOURNAL OF THE AMERICAN GERIATRICS SOCIETY, 2020, 68 : S3 - S4