Stabilised finite element methods for a bending moment formulation of the Reissner-Mindlin plate model

被引:1
作者
Barrenechea, Gabriel R. [1 ]
Barrios, Tomas P. [2 ]
Wachtel, Andreas [1 ]
机构
[1] Univ Strathclyde, Dept Math & Stat, 26 Richmond St, Glasgow G1 1XH, Lanark, Scotland
[2] Univ Catolica Santisima Concepcion, Dept Matemat & Fis Aplicadas, Concepcion, Chile
关键词
Reissner-Mindlin plate; Stabilised finite element method; Symmetric formulation; Symmetric tensor;
D O I
10.1007/s10092-014-0120-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work presents new stabilised finite element methods for a bending moments formulation of the Reissner-Mindlin plate model. The introduction of the bending moment as an extra unknown leads to a new weak formulation, where the symmetry of this variable is imposed strongly in the space. This weak problem is proved to be well-posed, and stabilised Galerkin schemes for its discretisation are presented and analysed. The finite element methods are such that the bending moment tensor is sought in a finite element space constituted of piecewise linear continuos and symmetric tensors. Optimal error estimates are proved, and these findings are illustrated by representative numerical experiments.
引用
收藏
页码:343 / 369
页数:27
相关论文
共 21 条
[1]   New locking-free mixed method for the Reissner mindlin thin plate model [J].
Amara, M ;
Capatina-Papaghiuc, D ;
Chatti, A .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (04) :1561-1582
[2]  
[Anonymous], 1986, SPRINGER SERIES COMP
[3]   A UNIFORMLY ACCURATE FINITE-ELEMENT METHOD FOR THE REISSNER-MINDLIN PLATE [J].
ARNOLD, DN ;
FALK, RS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (06) :1276-1290
[4]   A New Family of Mixed Methods for the Reissner-Mindlin Plate Model Based on a System of First-Order Equations [J].
Behrens, Edwin M. ;
Guzman, J. .
JOURNAL OF SCIENTIFIC COMPUTING, 2011, 49 (02) :137-166
[5]   Numerical analysis of a locking-free mixed finite element method for a bending moment formulation of Reissner-Mindlin plate model [J].
Beirao da Veiga, Lourenco ;
Mora, David ;
Rodriguez, Rodolfo .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (01) :40-63
[6]   Stabilization of low-order mixed finite elements for the Stokes equations [J].
Bochev, PB ;
Dohrmann, CR ;
Gunzburger, MD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (01) :82-101
[7]   A MULTIGRID METHOD FOR A PARAMETER DEPENDENT PROBLEM IN SOLID MECHANICS [J].
BRAESS, D ;
BLOMER, C .
NUMERISCHE MATHEMATIK, 1990, 57 (08) :747-761
[8]  
Brezzi F., 1991, Mathematical Models & Methods in Applied Sciences, V1, P125, DOI 10.1142/S0218202591000083
[9]  
Brezzi F, 2001, NUMER MATH, V89, P457, DOI 10.1007/s002110100258
[10]   A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty [J].
Burman, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) :2012-2033