THE LAITINEN CONJECTURE FOR FINITE NON-SOLVABLE GROUPS

被引:4
作者
Pawalowski, Krzysztof [1 ]
Sumi, Toshio [2 ]
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-61614 Poznan, Poland
[2] Kyushu Univ, Fac Arts & Sci, Nishi Ku, Fukuoka 8190395, Japan
关键词
Smith equivalence; real G-module; Oliver group; Laitinen conjecture; non-solvable group; FIXED-POINT SETS; SMITH EQUIVALENCE; SMOOTH ACTIONS; OLIVER GROUPS; ODD ORDER; REPRESENTATIONS; SPHERES; MANIFOLDS; COMPLEXES; COMPACT;
D O I
10.1017/S0013091512000223
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any finite group G, we impose an algebraic condition, the G(nil)-coset condition, and prove that any finite Oliver group G satisfying the G(nil)-coset condition has a smooth action on some sphere with isolated fixed points at which the tangent G-modules are not isomorphic to each other. Moreover, we prove that, for any finite non-solvable group G not isomorphic to Aut(A(6)) or P Sigma L(2, 27), the G(nil)-coset condition holds if and only if rG >= 2, where r(G) is the number of real conjugacy classes of elements of G not of prime power order. As a conclusion, the Laitinen Conjecture holds for any finite non-solvable group not isomorphic to Aut(A(6)).
引用
收藏
页码:303 / 336
页数:34
相关论文
共 63 条
[1]   A LEFSCHETZ FIXED POINT FORMULA FOR ELLIPTIC COMPLEXES .2. APPLICATIONS [J].
ATIYAH, MF ;
BOTT, R .
ANNALS OF MATHEMATICS, 1968, 88 (03) :451-&
[2]  
BREDON G. E., 1972, PURE APPL MATH, V6
[3]   REPRESENTATIONS AT FIXED POINTS OF SMOOTH ACTIONS OF COMPACT GROUPS [J].
BREDON, GE .
ANNALS OF MATHEMATICS, 1969, 89 (03) :515-&
[4]   FIXED-POINTS OF PERIODIC MAPS [J].
CAPPELL, SE ;
SHANESON, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1980, 77 (09) :5052-5054
[5]   FIXED-POINTS OF PERIODIC DIFFERENTIABLE MAPS [J].
CAPPELL, SE ;
SHANESON, JL .
INVENTIONES MATHEMATICAE, 1982, 68 (01) :1-19
[6]  
CAPPELL SE, 1985, CONT MATH, V36, P151
[7]  
Cho E. C., 1985, CONT MATH, V36, P311
[8]  
CHO EC, 1985, CONT MATH, V36, P317
[9]  
Conway J. H., 1985, ATLAS of Finite Groups
[10]  
Dieck T. tom, 1987, De Gruyter Studies in Mathematics, V8