Food Classification from Images Using Convolutional Neural Networks

被引:0
|
作者
Attokaren, David J. [1 ]
Fernandes, Ian G. [1 ]
Sriram, A. [1 ]
Murthy, Y. V. Srinivasa [1 ]
Koolagudi, Shashidhar G. [1 ]
机构
[1] Natl Inst Technol Karnataka, Dept CSE, Mangalore 575025, India
来源
TENCON 2017 - 2017 IEEE REGION 10 CONFERENCE | 2017年
关键词
Convolution filters; Convolution layer; Convolutional neural networks; Food-101; dataset; Food classification; Image recognition; MAX pooling; DIETARY ASSESSMENT; RECOGNITION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The process of identifying food items from an image is quite an interesting field with various applications. Since food monitoring plays a leading role in health-related problems, it is becoming more essential in our day-to-day lives. In this paper, an approach has been presented to classify images of food using convolutional neural networks. Unlike the traditional artificial neural networks, convolutional neural networks have the capability of estimating the score function directly from image pixels. A 2D convolution layer has been utilised which creates a convolution kernel that is convolved with the layer input to produce a tensor of outputs. There are multiple such layers, and the outputs are concatenated at parts to form the final tensor of outputs. We also use the Max-Pooling function for the data, and the features extracted from this function are used to train the network. An accuracy of 86.97% for the classes of the FOOD-101 dataset is recognised using the proposed implementation.
引用
收藏
页码:2801 / 2806
页数:6
相关论文
共 50 条
  • [1] Defect classification in shearography images using convolutional neural networks
    Frohlich, Herberth Birck
    Fantin, Analucia Vieira
    Fonseca de Oliveira, Bernardo Cassimiro
    Willemann, Daniel Pedro
    Iervolino, Lucas Arrigoni
    Benedet, Mauro Eduardo
    Goncalves, Armando Albertazzi, Jr.
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [2] Classification of Images as Photographs or Paintings by Using Convolutional Neural Networks
    Miguel Lopez-Rubio, Jose
    Molina-Cabello, Miguel A.
    Ramos-Jimenez, Gonzalo
    Lopez-Rubio, Ezequiel
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2021, PT I, 2021, 12861 : 432 - 442
  • [3] Classification of Human Metaspread Images Using Convolutional Neural Networks
    Arora, Tanvi
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2021, 21 (03)
  • [4] Polyp Classification and Clustering from Endoscopic Images using Competitive and Convolutional Neural Networks
    Kabra, Avish
    Iwahori, Yuji
    Usami, Hiroyasu
    Bhuyan, M. K.
    Ogasawara, Naotaka
    Kasugai, Kunio
    ICPRAM: PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS, 2019, : 446 - 452
  • [5] Automated lithology classification from drill core images using convolutional neural networks
    Alzubaidi, Fatimah
    Mostaghimi, Peyman
    Swietojanski, Pawel
    Clark, Stuart R.
    Armstrong, Ryan T.
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2021, 197
  • [6] Classification of Tumor Regions in Histopathological Images Using Convolutional Neural Networks
    Gunduz, Koray
    Albayrak, Abdulkadir
    Bilgin, Gokhan
    Karsligil, M. Elif
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [7] Multi-label classification of line chart images using convolutional neural networks
    Kosemen, Cem
    Birant, Derya
    SN APPLIED SCIENCES, 2020, 2 (07):
  • [8] Classification of Low Resolution Astronomical Images using Convolutional Neural Networks
    Patil, Jyoti S.
    Pawase, Ravindra S.
    Dandawate, Y. H.
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ELECTRONICS, INFORMATION & COMMUNICATION TECHNOLOGY (RTEICT), 2017, : 1168 - 1172
  • [9] Classification of Blood Cancer Images Using a Convolutional Neural Networks Ensemble
    Ma, Kaiqiang
    Sun, Lingling
    Wang, Yaqi
    Wang, Junchao
    ELEVENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2019), 2019, 11179
  • [10] Classification of polarimetric SAR images using compact convolutional neural networks
    Ahishali, Mete
    Kiranyaz, Serkan
    Ince, Turker
    Gabbouj, Moncef
    GISCIENCE & REMOTE SENSING, 2021, 58 (01) : 28 - 47