Public channel cryptography: Chaos synchronization and Hilbert's tenth problem

被引:45
作者
Kanter, Ido [1 ]
Kopelowitz, Evi [1 ]
Kinzel, Wolfgang [2 ]
机构
[1] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
[2] Univ Wurzburg, Inst Theoret Phys, D-97074 Wurzburg, Germany
关键词
D O I
10.1103/PhysRevLett.101.084102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The synchronization process of two mutually delayed coupled deterministic chaotic maps is demonstrated both analytically and numerically. The synchronization is preserved when the mutually transmitted signals are concealed by two commutative private filters, a convolution of the truncated time-delayed output signals or some powers of the delayed output signals. The task of a passive attacker is mapped onto Hilbert's tenth problem, solving a set of nonlinear Diophantine equations, which was proven to be in the class of NP-complete problems [problems that are both NP (verifiable in nondeterministic polynomial time) and NP-hard (any NP problem can be translated into this problem)]. This bridge between nonlinear dynamics and NP-complete problems opens a horizon for new types of secure public-channel protocols.
引用
收藏
页数:4
相关论文
共 23 条
[1]   Chaos communications - Principles, schemes, and system analysis [J].
Abel, A ;
Schwarz, W .
PROCEEDINGS OF THE IEEE, 2002, 90 (05) :691-710
[2]   Chaos-based communications at high bit rates using commercial fibre-optic links [J].
Argyris, A ;
Syvridis, D ;
Larger, L ;
Annovazzi-Lodi, V ;
Colet, P ;
Fischer, I ;
García-Ojalvo, J ;
Mirasso, CR ;
Pesquera, L ;
Shore, KA .
NATURE, 2005, 438 (7066) :343-346
[3]   EXACT SOLUTIONS OF LINEAR EQUATIONS WITH RATIONAL COEFFICIENTS BY CONGRUENCE TECHNIQUES [J].
BOROSH, I ;
FRAENKEL, AS .
MATHEMATICS OF COMPUTATION, 1966, 20 (93) :107-&
[4]   HILBERTS TENTH PROBLEM IS UNSOLVABLE [J].
DAVIS, M .
AMERICAN MATHEMATICAL MONTHLY, 1973, 80 (03) :233-269
[5]  
GAREY MR, 1979, COMPUTERS INTRACTABI, P53607
[6]   NP-COMPLETE NUMBER-THEORETIC PROBLEM [J].
GURARI, EM ;
IBARRA, OH .
JOURNAL OF THE ACM, 1979, 26 (03) :567-581
[7]  
KANTER I, ARXIV07122712V1, P53607
[8]   Synchronization of mutually coupled chaotic lasers in the presence of a shutter [J].
Kanter, Ido ;
Gross, Noam ;
Klein, Einat ;
Kopelowitz, Evi ;
Yoskovits, Pinhas ;
Khaykovich, Lev ;
Kinzel, Wolfgang ;
Rosenbluh, Michael .
PHYSICAL REVIEW LETTERS, 2007, 98 (15)
[9]   Sublattice synchronization of chaotic networks with delayed couplings [J].
Kestler, Johannes ;
Kinzel, Wolfgang ;
Kanter, Ido .
PHYSICAL REVIEW E, 2007, 76 (03)
[10]   Public-channel cryptography using chaos synchronization [J].
Klein, E ;
Mislovaty, R ;
Kanter, I ;
Kinzel, W .
PHYSICAL REVIEW E, 2005, 72 (01)