Dynamical Behavior Analysis and Control of a Fractional-order Discretized Tumor Model

被引:0
|
作者
Zhang, Yaling [1 ]
Zhang, Xiaodan [1 ]
Zhang, Yinghan [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
来源
2016 INTERNATIONAL CONFERENCE ON INFORMATION ENGINEERING AND COMMUNICATIONS TECHNOLOGY (IECT 2016) | 2016年
关键词
fractional-order; cancer model; Discretization; chaos; feedback control; BIFURCATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we constructed a new fractional-order dynamical model of tumor and apply Euler method to obtain the discrete system. Local stability of the fixed points of the discretized system is studied. Numerical simulations show the chaotic attractor and the richer dynamical behavior of the discretized system. Linear feedback control method is used to control chaos in the considered discretized system. Numerical simulations results show that the controller can control the chaos effectively.
引用
收藏
页码:163 / 168
页数:6
相关论文
共 50 条
  • [31] Dynamical analysis of fractional-order nonlinear oscillator by incremental harmonic balance method
    Shen, Yong-Jun
    Wen, Shao-Fang
    Li, Xiang-Hong
    Yang, Shao-Pu
    Xing, Hai-Jun
    NONLINEAR DYNAMICS, 2016, 85 (03) : 1457 - 1467
  • [32] Dynamical analysis of a fractional-order eco-epidemiological model with disease in prey population
    Moustafa, Mahmoud
    Mohd, Mohd Hafiz
    Ismail, Ahmad Izani
    Abdullah, Farah Aini
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [33] Dynamical analysis of fractional-order Rossler and modified Lorenz systems
    Letellier, Christophe
    Aguirre, Luis A.
    PHYSICS LETTERS A, 2013, 377 (28-30) : 1707 - 1719
  • [34] Dynamical analysis of fractional-order Holling type-II food chain model
    Liu, Cuimin
    Wang, Zhen
    Meng, Bo
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (05) : 5221 - 5235
  • [35] Control of A Fractional-Order Arneodo System
    Zhang, Kun
    Wang, Hua
    Wang, Huitao
    MANUFACTURING SCIENCE AND TECHNOLOGY, PTS 1-8, 2012, 383-390 : 4405 - 4412
  • [36] Bifurcation Analysis and Control of Fractional-Order Quorum Sensing Network
    Liu Feng
    Dai Xiangjuan
    Mei Qicheng
    Ling Guang
    Wang Xinmei
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 10197 - 10201
  • [37] Stability analysis of a fractional-order cancer model with chaotic dynamics
    Naik, Parvaiz Ahmad
    Zu, Jian
    Naik, Mehraj-ud-din
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2021, 14 (06)
  • [38] Dynamical Characteristics of the Fractional-Order FitzHugh-Nagumo Model Neuron
    Liu, Yong
    Xie, Yong
    Kang, Yanmei
    Tan, Ning
    Jiang, Jun
    Xu, Jian-Xue
    ADVANCES IN COGNITIVE NEURODYNAMICS (II), 2011, : 253 - 258
  • [39] The Dynamical Behaviors of a Fractional-Order Malware Propagation Model in Information Networks
    Shi, Xueying
    Luo, An
    Chen, Xiaoping
    Huang, Ying
    Huang, Chengdai
    Yin, Xin
    MATHEMATICS, 2024, 12 (23)
  • [40] On a new fractional-order Logistic model with feedback control
    Manh Tuan Hoang
    A. M. Nagy
    Applied Mathematics-A Journal of Chinese Universities, 2021, 36 : 390 - 402