Dynamical Behavior Analysis and Control of a Fractional-order Discretized Tumor Model

被引:0
|
作者
Zhang, Yaling [1 ]
Zhang, Xiaodan [1 ]
Zhang, Yinghan [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
来源
2016 INTERNATIONAL CONFERENCE ON INFORMATION ENGINEERING AND COMMUNICATIONS TECHNOLOGY (IECT 2016) | 2016年
关键词
fractional-order; cancer model; Discretization; chaos; feedback control; BIFURCATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we constructed a new fractional-order dynamical model of tumor and apply Euler method to obtain the discrete system. Local stability of the fixed points of the discretized system is studied. Numerical simulations show the chaotic attractor and the richer dynamical behavior of the discretized system. Linear feedback control method is used to control chaos in the considered discretized system. Numerical simulations results show that the controller can control the chaos effectively.
引用
收藏
页码:163 / 168
页数:6
相关论文
共 50 条
  • [21] Dynamical behavior of a fractional-order epidemic model for investigating two fear effect functions
    Thirthar, Ashraf Adnan
    Abboubakar, Hamadjam
    Alaoui, Abdesslem Lamrani
    Nisar, Kottakkaran Sooppy
    RESULTS IN CONTROL AND OPTIMIZATION, 2024, 16
  • [22] Dynamical analysis and adaptive fuzzy control for the fractional-order financial risk chaotic system
    Aceng Sukono
    Shaobo Sambas
    Heng He
    Sundarapandian Liu
    Yuyun Vaidyanathan
    Jumadil Hidayat
    Advances in Difference Equations, 2020
  • [23] Dynamic behavior analysis of fractional-order Hindmarsh–Rose neuronal model
    Dong Jun
    Zhang Guang-jun
    Xie Yong
    Yao Hong
    Wang Jue
    Cognitive Neurodynamics, 2014, 8 : 167 - 175
  • [24] Dynamical analysis and adaptive fuzzy control for the fractional-order financial risk chaotic system
    Sukono
    Sambas, Aceng
    He, Shaobo
    Liu, Heng
    Vaidyanathan, Sundarapandian
    Hidayat, Yuyun
    Saputra, Jumadil
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [25] Bifurcation control for a fractional-order competition model of Internet with delays
    Xu, Changjin
    Liao, Maoxin
    Li, Peiluan
    NONLINEAR DYNAMICS, 2019, 95 (04) : 3335 - 3356
  • [26] Cluster synchronization in fractional-order complex dynamical networks
    Chen, Liping
    Chai, Yi
    Wu, Ranchao
    Sun, Jian
    Ma, Tiedong
    PHYSICS LETTERS A, 2012, 376 (35) : 2381 - 2388
  • [27] Complex dynamical behavior of a discretize fractional-order multi-drug antimicrobial resistance model
    Elettreby, M. F.
    Alqahtani, Ali S.
    Nabil, Tamer
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (05) : 3119 - 3131
  • [28] Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge
    Hong-Li Li
    Long Zhang
    Cheng Hu
    Yao-Lin Jiang
    Zhidong Teng
    Journal of Applied Mathematics and Computing, 2017, 54 : 435 - 449
  • [29] A general fractional-order dynamical network: Synchronization behavior and state tuning
    Wang, Junwei
    Xiong, Xiaohua
    CHAOS, 2012, 22 (02)
  • [30] Complex dynamics of a discrete fractional-order Leslie-Gower predator-prey model
    Singh, Anuraj
    Elsadany, Abdelalim A.
    Elsonbaty, Amr
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (11) : 3992 - 4007