Dynamical Behavior Analysis and Control of a Fractional-order Discretized Tumor Model

被引:0
|
作者
Zhang, Yaling [1 ]
Zhang, Xiaodan [1 ]
Zhang, Yinghan [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
来源
2016 INTERNATIONAL CONFERENCE ON INFORMATION ENGINEERING AND COMMUNICATIONS TECHNOLOGY (IECT 2016) | 2016年
关键词
fractional-order; cancer model; Discretization; chaos; feedback control; BIFURCATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we constructed a new fractional-order dynamical model of tumor and apply Euler method to obtain the discrete system. Local stability of the fixed points of the discretized system is studied. Numerical simulations show the chaotic attractor and the richer dynamical behavior of the discretized system. Linear feedback control method is used to control chaos in the considered discretized system. Numerical simulations results show that the controller can control the chaos effectively.
引用
收藏
页码:163 / 168
页数:6
相关论文
共 50 条
  • [11] Dynamical analysis of a fractional-order Rosenzweig-MacArthur model incorporating a prey refuge
    Moustafa, Mahmoud
    Mohd, Mohd Hafiz
    Ismail, Ahmad Izani
    Abdullah, Farah Aini
    CHAOS SOLITONS & FRACTALS, 2018, 109 : 1 - 13
  • [12] Dynamical behavior and Poincare section of fractional-order centrifugal governor system
    Alidousti, J.
    Eskandari, Z.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 182 : 791 - 806
  • [13] Dynamical behavior for fractional-order shunting inhibitory cellular neural networks
    Zhao, Yang
    Cai, Yanguang
    Fan, Guobing
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (06): : 4589 - 4599
  • [14] Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge
    Li, Hong-Li
    Zhang, Long
    Hu, Cheng
    Jiang, Yao-Lin
    Teng, Zhidong
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 54 (1-2) : 435 - 449
  • [15] Dynamical behavior of a fractional-order prey-predator model with infection and harvesting
    Moustafa, Mahmoud
    Abdullah, Farah Aini
    Shafie, Sharidan
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (06) : 4777 - 4794
  • [16] Stability analysis of a fractional-order delay Logistic model with feedback control
    Pan, Feng
    Cui, Xinshu
    Xue, Dingyu
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 3871 - 3875
  • [17] Stability analysis of a fractional-order delay dynamical model on oncolytic virotherapy
    Singh, Hitesh K.
    Pandey, Dwijendra N.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (02) : 1377 - 1393
  • [18] Dynamical behaviors of fractional-order Lotka–Volterra predator–prey model and its discretization
    Elsadany A.A.
    Matouk A.E.
    Journal of Applied Mathematics and Computing, 2015, 49 (1-2) : 269 - 283
  • [19] Dynamic behavior analysis of fractional-order Hindmarsh-Rose neuronal model
    Dong Jun
    Zhang Guang-jun
    Xie Yong
    Yao Hong
    Wang Jue
    COGNITIVE NEURODYNAMICS, 2014, 8 (02) : 167 - 175
  • [20] Dynamical analysis, control, boundedness, and prediction for a fractional-order financial risk system
    Yang, Kehao
    Zheng, Song
    Yu, Tianhu
    Sambas, Aceng
    Johansyah, Muhamad Deni
    Saberi-Nik, Hassan
    Mohamed, Mohamad Afendee
    CHINESE PHYSICS B, 2024, 33 (11)