Wavefront prediction using artificial neural networks for open-loop adaptive optics

被引:30
作者
Liu, Xuewen [1 ]
Morris, Tim [1 ]
Saunter, Chris [1 ]
de Cos Juez, Francisco Javier [2 ]
Gonzalez-Gutierrez, Carlos [2 ]
Bardou, Lisa [1 ]
机构
[1] Univ Durham, Ctr Adv Instrumentat, Dept Phys, South Rd, Durham DH1 3LE, England
[2] Univ Oviedo, Univ Inst Space Sci & Technol Asturias, E-33004 Oviedo, Spain
基金
欧盟地平线“2020”;
关键词
atmospheric effects; instrumentation: adaptive optics; methods: numerical; CONTROL LAW; LQG CONTROL; VALIDATION;
D O I
10.1093/mnras/staa1558
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Latency in the control loop of adaptive optics (AO) systems can severely limit performance. Under the frozen flow hypothesis linear predictive control techniques can overcome this; however, identification and tracking of relevant turbulent parameters (such as wind speeds) is required for such parametric techniques. This can complicate practical implementations and introduce stability issues when encountering variable conditions. Here, we present a non-linear wavefront predictor using a long short-term memory (LSTM) artificial neural network (ANN) that assumes no prior knowledge of the atmosphere and thus requires no user input. The ANN is designed to predict the open-loop wavefront slope measurements of a Shack-Hartmann wavefront sensor (SI I-WFS) one frame in advance to compensate for a single-frame delay in a simulated 7 x 7 single-conjugate adaptive optics system operating at 150 Hz. We describe how the training regime of the LSTM ANN affects prediction performance and show how the performance of the predictor varies under various guide star magnitudes. We show that the prediction remains stable when both wind speed and direction are varying. We then extend our approach to a more realistic two-frame latency system. AO system performance when using the LSTM predictor is enhanced for all simulated conditions with prediction errors within 19.9-40.0 nm RMS of a latency-free system operating under the same conditions compared to a bandwidth error of 78.3 +/- 4.4 nm RMS.
引用
收藏
页码:456 / 464
页数:9
相关论文
共 50 条
  • [41] Forecasting of hygrothermal behaviour of direct solar floors using artificial neural networks
    Menhoudj, S.
    Benzaama, M. H.
    Mokhtari, A. M.
    Rajaoarisoa, L.
    RENEWABLE ENERGY FOCUS, 2023, 44 : 75 - 84
  • [42] 1ST RESULTS OF AN ONLINE ADAPTIVE OPTICS SYSTEM WITH ATMOSPHERIC WAVE-FRONT SENSING BY AN ARTIFICIAL NEURAL NETWORK
    LLOYDHART, M
    WIZINOWICH, P
    MCLEOD, B
    WITTMAN, D
    COLUCCI, D
    DEKANY, R
    MCCARTHY, D
    ANGEL, JRP
    SANDLER, D
    ASTROPHYSICAL JOURNAL, 1992, 390 (01) : L41 - &
  • [43] Focal plane wavefront sensing using machine learning: performance of convolutional neural networks compared to fundamental limits
    de Xivry, G. Orban
    Quesnel, M.
    Vanberg, P-O
    Absil, O.
    Louppe, G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 505 (04) : 5702 - 5713
  • [44] In vivo validation of a computational bone adaptation model using open-loop control and time-lapsed micro-computed tomography
    Schulte, Friederike A.
    Lambers, Floor M.
    Webster, Duncan J.
    Kuhn, Gisela
    Mueller, Ralph
    BONE, 2011, 49 (06) : 1166 - 1172
  • [45] Prediction of Sensory Parameters of Cured Ham: A Study of the Viability of the Use of NIR Spectroscopy and Artificial Neural Networks
    Hernandez-Ramos, Pedro
    Vivar-Quintana, Ana Maria
    Revilla, Isabel
    Gonzalez-Martin, Maria Inmaculada
    Hernandez-Jimenez, Miriam
    Martinez-Martin, Ivan
    SENSORS, 2020, 20 (19) : 1 - 19
  • [46] Deep search for companions to probable young brown dwarfs VLT/NACO adaptive optics imaging using IR wavefront sensing (Research Note)
    Chauvin, G.
    Faherty, J.
    Boccaletti, A.
    Cruz, K.
    Lagrange, A. -M.
    Zuckerman, B.
    Bessell, M. S.
    Beuzit, J. -L.
    Bonnefoy, M.
    Dumas, C.
    Lowrance, P.
    Mouillet, D.
    Song, I.
    ASTRONOMY & ASTROPHYSICS, 2012, 548
  • [47] Novel Prehospital Prediction Mode of Large Vessel Occlusion Using Artificial Neural Network
    Chen, Zhicai
    Zhang, Ruiting
    Xu, Feizhou
    Gong, Xiaoxian
    Shi, Feina
    Zhang, Meixia
    Lou, Min
    FRONTIERS IN AGING NEUROSCIENCE, 2018, 10
  • [48] Uncertainty quantification in multiaxial fatigue life prediction using Bayesian neural networks
    He, Gaoyuan
    Zhao, Yongxiang
    Yan, Chuliang
    ENGINEERING FRACTURE MECHANICS, 2024, 298
  • [49] Software Effort Prediction using Regression Rule Extraction from Neural Networks
    Setiono, Rudy
    Dejaeger, Karel
    Verbeke, Wouter
    Martens, David
    Baesens, Bart
    22ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2010), PROCEEDINGS, VOL 2, 2010, : 45 - 52
  • [50] A Revision of Empirical Models of Stirling Engine Performance Using Simple Artificial Neural Networks
    Gonzalez-Plaza, Enrique
    Garcia, David
    Prieto, Jesus-Ignacio
    INVENTIONS, 2023, 8 (04)