Wavefront prediction using artificial neural networks for open-loop adaptive optics

被引:30
作者
Liu, Xuewen [1 ]
Morris, Tim [1 ]
Saunter, Chris [1 ]
de Cos Juez, Francisco Javier [2 ]
Gonzalez-Gutierrez, Carlos [2 ]
Bardou, Lisa [1 ]
机构
[1] Univ Durham, Ctr Adv Instrumentat, Dept Phys, South Rd, Durham DH1 3LE, England
[2] Univ Oviedo, Univ Inst Space Sci & Technol Asturias, E-33004 Oviedo, Spain
基金
欧盟地平线“2020”;
关键词
atmospheric effects; instrumentation: adaptive optics; methods: numerical; CONTROL LAW; LQG CONTROL; VALIDATION;
D O I
10.1093/mnras/staa1558
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Latency in the control loop of adaptive optics (AO) systems can severely limit performance. Under the frozen flow hypothesis linear predictive control techniques can overcome this; however, identification and tracking of relevant turbulent parameters (such as wind speeds) is required for such parametric techniques. This can complicate practical implementations and introduce stability issues when encountering variable conditions. Here, we present a non-linear wavefront predictor using a long short-term memory (LSTM) artificial neural network (ANN) that assumes no prior knowledge of the atmosphere and thus requires no user input. The ANN is designed to predict the open-loop wavefront slope measurements of a Shack-Hartmann wavefront sensor (SI I-WFS) one frame in advance to compensate for a single-frame delay in a simulated 7 x 7 single-conjugate adaptive optics system operating at 150 Hz. We describe how the training regime of the LSTM ANN affects prediction performance and show how the performance of the predictor varies under various guide star magnitudes. We show that the prediction remains stable when both wind speed and direction are varying. We then extend our approach to a more realistic two-frame latency system. AO system performance when using the LSTM predictor is enhanced for all simulated conditions with prediction errors within 19.9-40.0 nm RMS of a latency-free system operating under the same conditions compared to a bandwidth error of 78.3 +/- 4.4 nm RMS.
引用
收藏
页码:456 / 464
页数:9
相关论文
共 50 条
  • [31] The prediction of successful surgery outcome in lumbar disc herniation based on artificial neural networks
    Azimi, Parisa
    Benzel, Edward C.
    Shahzadi, Sohrab
    Azhari, Shirzad
    Mohammadi, Hassan R.
    JOURNAL OF NEUROSURGICAL SCIENCES, 2016, 60 (02) : 173 - 177
  • [32] Inverse estimation of heat flux using linear artificial neural networks
    Wang, Hui
    Yang, Qingtao
    Zhu, Xinxin
    Zhou, Ping
    Yang, Kai
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2018, 132 : 478 - 485
  • [33] Recent Advances in the Modeling of Ionic Liquids Using Artificial Neural Networks
    Racki, Adrian
    Paduszynski, Kamil
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2025, : 3161 - 3175
  • [34] Nighttime cloud properties retrieval using MODIS and artificial neural networks
    Perez, J. C.
    Cerdena, A.
    Gonzalez, A.
    Armas, M.
    ADVANCES IN SPACE RESEARCH, 2009, 43 (05) : 852 - 858
  • [35] Prediction of Solar Wind Speed at 1 AU Using an Artificial Neural Network
    Yang, Yi
    Shen, Fang
    Yang, Zicai
    Feng, Xueshang
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2018, 16 (09): : 1227 - 1244
  • [36] Artificial neural networks based early clinical prediction of mortality after spontaneous intracerebral hemorrhage
    Lukic, Stevo
    Cojbasic, Zarko
    Peric, Zoran
    Milosevic, Zoran
    Spasic, Mirjana
    Pavlovic, Vukasin
    Milojevic, Andrija
    ACTA NEUROLOGICA BELGICA, 2012, 112 (04) : 375 - 382
  • [37] Optimization of cluster-based evolutionary undersampling for the artificial neural networks in corporate bankruptcy prediction
    Kim, Hyun-Jung
    Jo, Nam-Ok
    Shin, Kyung-Shik
    EXPERT SYSTEMS WITH APPLICATIONS, 2016, 59 : 226 - 234
  • [38] Prediction of Resting Energy Expenditure in Children: May Artificial Neural Networks Improve Our Accuracy?
    De Cosmi, Valentina
    Mazzocchi, Alessandra
    Milani, Gregorio Paolo
    Calderini, Edoardo
    Scaglioni, Silvia
    Bettocchi, Silvia
    D'Oria, Veronica
    Langer, Thomas
    Spolidoro, Giulia C. I.
    Leone, Ludovica
    Battezzati, Alberto
    Bertoli, Simona
    Leone, Alessandro
    De Amicis, Ramona Silvana
    Foppiani, Andrea
    Agostoni, Carlo
    Grossi, Enzo
    JOURNAL OF CLINICAL MEDICINE, 2020, 9 (04)
  • [39] Two-Phase Slug Flow Characterization Using Artificial Neural Networks
    Cozin, Cristiane
    Vicencio, Fernando E. C.
    de Almeida Barbuto, Fausto Arinos
    Morales, Rigoberto E. M.
    da Silva, Marco Jose
    Arruda, Lucia Valeria R.
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2016, 65 (03) : 494 - 501
  • [40] Automatic Calibration of Microscopic Traffic Simulation Models Using Artificial Neural Networks
    Daguano, Rodrigo F.
    Yoshioka, Leopoldo R.
    Netto, Marcio L.
    Marte, Claudio L.
    Isler, Cassiano A.
    Santos, Max Mauro Dias
    Justo, Joao F.
    SENSORS, 2023, 23 (21)