A family of realizability criteria for the real and symmetric nonnegative inverse eigenvalue problem

被引:19
作者
Soto, Ricardo L. [1 ]
机构
[1] Univ Catolica Norte, Dpto Matemat, Antofagasta, Chile
关键词
real and symmetric nonnegative inverse eigenvalue problem; COMPENSATION;
D O I
10.1002/nla.835
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new realizability criterion for the real nonnegative inverse eigenvalue problemis introduced. This criterion is a nontrivial extension of a powerful previous sufficient condition, based on negativity compensation. If the criterion is satisfied, then we can always construct a realizing matrix. It is also proved that this new criterion is easily adaptable to be sufficient for the construction of a symmetric nonnegative matrixwith given spectrum. In a natural way, the criterion extends to a family of sufficient conditions for the problem to have a solution. Copyright (c) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:336 / 348
页数:13
相关论文
共 16 条
[1]   Functions preserving nonnegativity of matrices [J].
Bharali, Gautam ;
Holtz, Olga .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (01) :84-101
[2]   Negativity compensation in the nonnegative inverse eigenvalue problem [J].
Borobia, A ;
Moro, J ;
Soto, R .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 393 (1-3) :73-89
[3]   A unified view on compensation criteria in the real nonnegative inverse eigenvalue problem [J].
Borobia, Alberto ;
Moro, Julio ;
Soto, Ricardo. L. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (11-12) :2574-2584
[5]  
Fiedler M., 1974, Linear Algebra and Its Applications, V9, P119, DOI 10.1016/0024-3795(74)90031-7
[6]  
Johnson C.R., 1981, Linear Multilinear Algebra, V10, P113, DOI DOI 10.1080/03081088108817402
[7]   The real and the symmetric nonnegative inverse eigenvalue problems are different [J].
Johnson, CR ;
Laffey, TJ ;
Loewy, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (12) :3647-3651
[8]  
Laffey T.J., 1998, Electronic J. Linear Algebra, V3, P119
[9]  
Loewy R., 1978, Linear and Multilinear Algebra, V6, P83, DOI DOI 10.1080/03081087808817226
[10]   A map of sufficient conditions for the real nonnegative inverse eigenvalue problem [J].
Marijuan, Carlos ;
Pisonero, Miriam ;
Soto, Ricardo L. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (2-3) :690-705