PICARD GROUPS IN POISSON GEOMETRY

被引:23
作者
Bursztyn, Henrique [1 ]
Weinstein, Alan [2 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 3G3, Canada
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
Picard group; Morita equivalence; Poisson manifold; symplectic groupoid; bimodule;
D O I
10.17323/1609-4514-2004-4-1-39-66
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study isomorphism classes of symplectic dual pairs P <- S -> (P) over bar, where P is an integrable Poisson manifold, S is symplectic, and the two maps are complete, surjective Poisson submersions with connected and simply-connected fibres. For fixed P, these Morita self-equivalences of P form a group Pic(P) under a natural "tensor product" operation. Variants of this construction are also studied, for rings (the origin of the notion of Picard group), Lie groupoids, and symplectic groupoids.
引用
收藏
页码:39 / 66
页数:28
相关论文
共 55 条
[1]  
ALBERT C, 1991, MATH SCI R, V20, P1
[2]  
Alekseev A, 1998, J DIFFER GEOM, V48, P445
[3]  
[Anonymous], 1998, SPRINGER MONOGRAPHS
[4]  
Bass H., 1968, Algebraic K-theory
[5]   Equivariant gerbes over compact simple Lie groups [J].
Behrend, K ;
Xu, P ;
Zhang, B .
COMPTES RENDUS MATHEMATIQUE, 2003, 336 (03) :251-256
[6]  
Benabou J., 1967, REPORTS MIDWEST CATE, V47, P1
[7]   Gauge equivalence of Dirac structures and symplectic groupoids [J].
Bursztyn, H ;
Radko, O .
ANNALES DE L INSTITUT FOURIER, 2003, 53 (01) :309-+
[8]   The characteristic classes of Morita equivalent star products on symplectic manifolds [J].
Bursztyn, H ;
Waldmann, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 228 (01) :103-121
[9]  
Bursztyn H., K THEORY IN PRESS
[10]  
Cannas da Silva A, 1999, BERKELEY MATH LECT N, V10