Nodal discontinuous Galerkin methods for fractional diffusion equations on 2D domain with triangular meshes

被引:37
作者
Qiu, Liangliang [1 ]
Deng, Weihua [1 ]
Hesthaven, Jan S. [2 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Gansu Key Lab Appl Math & Complex Syst, Lanzhou 730000, Peoples R China
[2] Ecole Polytech Fed Lausanne, EPFL SB MATHICSE MCSS, CH-1015 Lausanne, Switzerland
基金
美国国家科学基金会;
关键词
2D fractional diffusion equation; Triangular meshes; Nodal discontinuous Galerkin methods; SPECTRAL ELEMENT METHODS; DIFFERENTIAL-EQUATIONS; SPACE; TIME;
D O I
10.1016/j.jcp.2015.06.022
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper, as the sequel to previous work, develops numerical schemes for fractional diffusion equations on a two-dimensional finite domain with triangular meshes. We adopt the nodal discontinuous Galerkin methods for the full spatial discretization by the use of high-order nodal basis, employing multivariate Lagrange polynomials defined on the triangles. Stability analysis and error estimates are provided, which shows that if polynomials of degree N are used, the methods are (N + 1)-th order accurate for general triangulations. Finally, the performed numerical experiments confirm the optimal order of convergence. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:678 / 694
页数:17
相关论文
共 18 条
[1]   Fractional Fokker-Planck equation, solution, and application [J].
Barkai, E .
PHYSICAL REVIEW E, 2001, 63 (04)
[2]   LOCAL DISCONTINUOUS GALERKIN METHODS FOR FRACTIONAL DIFFUSION EQUATIONS [J].
Deng, W. H. ;
Hesthaven, J. S. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (06) :1845-1864
[3]   High order finite difference WENO schemes for fractional differential equations [J].
Deng, Weihua ;
Du, Shanda ;
Wu, Yujiang .
APPLIED MATHEMATICS LETTERS, 2013, 26 (03) :362-366
[4]   FINITE ELEMENT METHOD FOR THE SPACE AND TIME FRACTIONAL FOKKER-PLANCK EQUATION [J].
Deng, Weihua .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 47 (01) :204-226
[5]   Variational formulation for the stationary fractional advection dispersion equation [J].
Ervin, VJ ;
Roop, JP .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2006, 22 (03) :558-576
[6]  
Hesthaven JS, 2008, TEXTS APPL MATH, V54, P1
[7]   From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex [J].
Hesthaven, JS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (02) :655-676
[8]   High-Order Accurate Runge-Kutta (Local) Discontinuous Galerkin Methods for One- and Two-Dimensional Fractional Diffusion Equations [J].
Ji, Xia ;
Tang, Huazhong .
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2012, 5 (03) :333-358
[9]   A SPACE-TIME SPECTRAL METHOD FOR THE TIME FRACTIONAL DIFFUSION EQUATION [J].
Li, Xianjuan ;
Xu, Chuanju .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) :2108-2131
[10]   Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation [J].
McLean, William ;
Mustapha, Kassem .
NUMERICAL ALGORITHMS, 2009, 52 (01) :69-88