Stability analysis for switched discrete-time linear singular systems

被引:31
作者
Pham Ky Anh [1 ]
Pham Thi Linh [1 ]
Do Duc Thuan [2 ]
Trenn, Stephan [3 ]
机构
[1] Vietnam Natl Univ, Fac Math Mech & Informat, 334 Nguyen Trai, Hanoi, Vietnam
[2] Hanoi Univ Sci & Technol, Sch Appl Math & Informat, 1 Dai Co Viet, Hanoi, Vietnam
[3] Univ Groningen, Bernoulli Inst, Nijenborgh 9, NL-9747 AG Groningen, Netherlands
关键词
Switched singular systems; Index-1; Exponential stability; Joint spectral radius; Lyapunov functions; DESCRIPTOR SYSTEMS; EQUATIONS;
D O I
10.1016/j.automatica.2020.109100
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The stability of arbitrarily switched discrete-time linear singular (SDLS) systems is studied. Our analysis builds on the recently introduced one-step-map for SDLS systems of index-1. We first provide a sufficient stability condition in terms of Lyapunov functions. Furthermore, we generalize the notion of joint spectral radius of a finite set of matrix pairs, which allows us to fully characterize exponential stability. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 37 条
[1]  
Anh P.K., 2007, VIETNAM J MATH, V35, P339
[2]   Floquet theorem for linear implicit nonautonomous difference systems [J].
Anh, Pham Ky ;
Yen, Ha Thi Ngoc .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 321 (02) :921-929
[3]   The quasi-Weierstrass form for regular matrix pencils [J].
Berger, Thomas ;
Ilchmann, Achim ;
Trenn, Stephan .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (10) :4052-4069
[4]   Stability analysis for discrete-time switched linear singular systems: average dwell time approach [J].
Chen, Yonggang ;
Fei, Shumin ;
Zhang, Kanjian .
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2013, 30 (02) :239-249
[5]   Admissibility and control of switched discrete-time singular systems [J].
Darouach, M. ;
Chadli, M. .
SYSTEMS SCIENCE & CONTROL ENGINEERING, 2013, 1 (01) :43-51
[6]  
Debeljkovic D., 2007, SCI TECH REV
[7]   On stability and Bohl exponent of linear singular systems of difference equations with variable coefficients [J].
Du, N. H. ;
Linh, V. H. ;
Nga, N. T. T. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2016, 22 (09) :1350-1377
[8]   On the control of linear systems having internal variations [J].
Estrada, MB ;
Malabre, M .
AUTOMATICA, 2003, 39 (11) :1989-1996
[9]  
Gantmacher F. R, 1959, The Theory of Matrices, V1
[10]  
Griepentrog E., 1986, TEUBNER TEXT MATH