Multiclass Classification of EEG Signal Using a Probabilistic Approach

被引:2
|
作者
Venate, Salini [1 ]
Sunny, T. D. [1 ]
机构
[1] GEC Thrissur, Trichur, Kerala, India
关键词
Brain ComputerInterfacing; Common satial pattern; Multi-class;
D O I
10.1016/j.protcy.2016.05.219
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Brain Computer Interfacing (BCI) also called Brain Machine Interfacing (BMI)) is a challenging problem that forms part of a larger research area, called the Human Computer Interfacing (HCI), which interlinks thoughts to action. In BCI systems, the user messages or commands do not depend on the normal output channels of the brain. Therefore the main objective of BCI is to process the electrical signals generated by the neurons in the brain and generate the necessary signals to control some external systems. This paper investigates the feasibility of using Bayesian Spatio Spectral Filter Optimization algorithm for motor imagery classification in a multiclass scenario. (C) 2016 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:1002 / 1007
页数:6
相关论文
共 50 条
  • [1] Classification of multiclass motor imagery EEG signal using sparsity approach
    Sreeja, S. R.
    Samanta, Debasis
    NEUROCOMPUTING, 2019, 368 : 133 - 145
  • [2] A novel statistical algorithm for multiclass EEG signal classification
    Siuly
    Li, Yan
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2014, 34 : 154 - 167
  • [3] A Multiclass EEG Signal Classification Model using Spatial Feature Extraction and XGBoost Algorithm
    Tiwari, Anurag
    Chaturvedi, Arnrita
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 4169 - 4175
  • [4] An Improved Approach for EEG Signal Classification using Autoencoder
    Nair, Abhijith V.
    Kumar, Kodidasu Murali
    Mathew, Jimson
    PROCEEDINGS OF THE 2018 8TH INTERNATIONAL SYMPOSIUM ON EMBEDDED COMPUTING AND SYSTEM DESIGN (ISED 2018), 2018, : 6 - 10
  • [5] Multiclass EEG Data Classification using Fuzzy Systems
    Thanh Nguyen
    Hettiarachchi, Imali
    Khosravi, Abbas
    Salaken, Syed Moshfeq
    Bhatti, Asim
    Nahavandi, Saeid
    2017 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2017,
  • [6] Multiclass classification of EEG signal for epilepsy detection using DWT based SVD and fuzzy kNN classifier
    Singh, Nalini
    Dehuri, Satchidananda
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2020, 14 (02): : 239 - 252
  • [7] Probabilistic Classification Vector Machines for Multiclass Classification
    Qian, Xusheng
    Huang, He
    Hu, Jisu
    Zhou, Zhiyong
    Geng, Chen
    Dai, Yakang
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 1028 - 1032
  • [8] Multiclass Probabilistic Classification Vector Machine
    Lyu, Shengfei
    Tian, Xing
    Li, Yang
    Jiang, Bingbing
    Chen, Huanhuan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (10) : 3906 - 3919
  • [9] Probabilistic class hierarchies for multiclass classification
    Silva-Palacios, Daniel
    Ferri, Cesar
    Jose Ramirez-Quintana, Maria
    JOURNAL OF COMPUTATIONAL SCIENCE, 2018, 26 : 254 - 263
  • [10] A Quasi-probabilistic distribution model for EEG Signal classification by using 2-D signal representation
    Yilmaz, Cagatay Murat
    Kose, Cemal
    Hatipoglu, Bahar
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 162 : 187 - 196