Engineering Filamentous Fungi for Conversion of D-Galacturonic Acid to L-Galactonic Acid

被引:44
作者
Kuivanen, Joosu [1 ]
Mojzita, Dominik [1 ]
Wang, Yanming [1 ]
Hilditch, Satu [1 ]
Penttila, Merja [1 ]
Richard, Peter [1 ]
Wiebe, Marilyn G. [1 ]
机构
[1] VTT Tech Res Ctr Finland, Espoo, Finland
基金
芬兰科学院;
关键词
MOLD HYPOCREA-JECORINA; ASPERGILLUS; ETHANOL; PATHWAY; IDENTIFICATION; FERMENTATION; CULTURE; BIOMASS;
D O I
10.1128/AEM.02171-12
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
D-Galacturonic acid, the main monomer of pectin, is an attractive substrate for bioconversions, since pectin-rich biomass is abundantly available and pectin is easily hydrolyzed. L-Galactonic acid is an intermediate in the eukaryotic pathway for D-galacturonic acid catabolism, but extracellular accumulation of L-galactonic acid has not been reported. By deleting the gene encoding L-galactonic acid dehydratase (lgd1 or gaaB) in two filamentous fungi, strains were obtained that converted D-galacturonic acid to L-galactonic acid. Both Trichoderma reesei Delta lgd1 and Aspergillus niger Delta gaaB strains produced L-galactonate at yields of 0.6 to 0.9 g per g of substrate consumed. Although T. reesei Delta lgd1 could produce L-galactonate at pH 5.5, a lower pH was necessary for A. niger Delta gaaB. Provision of a cosubstrate improved the production rate and titer in both strains. Intracellular accumulation of L-galactonate (40 to 70 mg g biomass(-1)) suggested that export may be limiting. Deletion of the L-galactonate dehydratase from A. niger was found to delay induction of D-galacturonate reductase and overexpression of the reductase improved initial production rates. Deletion of the L-galactonate dehydratase from A. niger also delayed or prevented induction of the putative D-galacturonate transporter An14g04280. In addition, A. niger Delta gaaB produced L-galactonate from polygalacturonate as efficiently as from the monomer.
引用
收藏
页码:8676 / 8683
页数:8
相关论文
共 21 条
[1]  
BARRATT RW, 1965, GENETICS, V52, P233
[2]   Thermodynamic boundary conditions suggest that a passive transport step suffices for citrate excretion in Aspergillus and Penicillium [J].
Burgstaller, W .
MICROBIOLOGY-SGM, 2006, 152 :887-893
[3]   AN EXPEDIENT AND PRACTICAL 3-STEP SYNTHESIS OF VITAMIN-C FROM A BY-PRODUCT OF THE SUGAR-INDUSTRY - THE L-GALACTONO-1,4-LACTONE PATHWAY [J].
CSIBA, M ;
CLEOPHAX, J ;
PETIT, S ;
GERO, SD .
JOURNAL OF ORGANIC CHEMISTRY, 1993, 58 (25) :7281-7282
[4]   Expression profiling of pectinolytic genes from Aspergillus niger [J].
de Vries, RP ;
Jansen, J ;
Aguilar, G ;
Parenicová, L ;
Joosten, V ;
Wülfert, F ;
Benen, JAE ;
Visser, J .
FEBS LETTERS, 2002, 530 (1-3) :41-47
[5]   Fermentations of pectin-rich biomass with recombinant bacteria to produce fuel ethanol [J].
Doran, JB ;
Cripe, J ;
Sutton, M ;
Foster, B .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2000, 84-6 (1-9) :141-152
[6]   Microbial conversion of sugars from plant biomass to lactic acid or ethanol [J].
Doran-Peterson, Joy ;
Cook, Dana M. ;
Brandon, Sarah K. .
PLANT JOURNAL, 2008, 54 (04) :582-592
[7]   Fermentation of galacturonic acid and pectin-rich materials to ethanol by genetically modified strains of Erwinia [J].
Grohmann, K ;
Manthey, JA ;
Cameron, RG ;
Buslig, BS .
BIOTECHNOLOGY LETTERS, 1998, 20 (02) :195-200
[8]   The missing link in the fungal D-galacturonate pathway -: Identification of the L-threo-3-deoxy-hexulosonate aldolase [J].
Hilditch, Satu ;
Berghall, Suvi ;
Kalkkinen, Nisse ;
Penttilae, Merja ;
Richard, Peter .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (36) :26195-26201
[9]   Identification in the mold Hypocrea jecorina of the first fungal D-galacturonic acid reductase [J].
Kuorelahti, S ;
Kalkkinen, N ;
Penttilä, M ;
Londesborough, J ;
Richard, P .
BIOCHEMISTRY, 2005, 44 (33) :11234-11240
[10]   L-galactonate dehydratase is part of the fungal path for D-galacturonic acid catabolism [J].
Kuorelahti, Satu ;
Jouhten, Paula ;
Maaheimo, Hannu ;
Penttila, Merja ;
Richard, Peter .
MOLECULAR MICROBIOLOGY, 2006, 61 (04) :1060-1068