Overexpression of a Medicago truncatula stress-associated protein gene (MtSAP1) leads to nitric oxide accumulation and confers osmotic and salt stress tolerance in transgenic tobacco

被引:34
|
作者
Charrier, Aurelie [1 ]
Planchet, Elisabeth [1 ]
Cerveau, Delphine [1 ]
Gimeno-Gilles, Christine [1 ]
Verdu, Isabelle [1 ]
Limami, Anis M. [1 ]
Lelievre, Eric [2 ]
机构
[1] Univ Angers, Res Inst Hort & Seeds, INRA, Agrocampus Ouest,UMR 1345,SFR Quasav 4207, F-49045 Angers, France
[2] Univ Angers, CNRS, INSERM, UMR 6214,UMR 1083, F-49045 Angers, France
关键词
Abiotic stress; Nicotiana; Nitric oxide; Seedling; Stress-associated protein; A20/AN1; ZINC-FINGER; TRANSCRIPTIONAL REGULATORY NETWORKS; PLANT-DISEASE RESISTANCE; NF-KAPPA-B; ABIOTIC STRESSES; ROOT DEVELOPMENT; ARABIDOPSIS; RESPONSES; GROWTH; SIGNAL;
D O I
10.1007/s00425-012-1635-9
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The impact of Medicago truncatula stress-associated protein gene (MtSAP1) overexpression has been investigated in Nicotiana tabacum transgenic seedlings. Under optimal conditions, transgenic lines overexpressing MtSAP1 revealed better plant development and higher chlorophyll content as compared to wild type seedlings. Interestingly, transgenic lines showed a stronger accumulation of nitric oxide (NO), a signaling molecule involved in growth and development processes. This NO production seemed to be partially nitrate reductase dependent. Due to the fact that NO has been also reported to play a role in tolerance acquisition of plants to abiotic stresses, the responses of MtSAP1 overexpressors to osmotic and salt stress have been studied. Compared to the wild type, transgenic lines were less affected in their growth and development. Moreover, NO content in MtSAP1 overexpressors was always higher than that detected in wild seedlings under stress conditions. It seems that this better tolerance induced by MtSAP1 overexpression could be associated with this higher NO production that would enable seedlings to reach a high protection level to prepare them to cope with abiotic stresses.
引用
收藏
页码:567 / 577
页数:11
相关论文
共 50 条
  • [1] Overexpression of a Medicago truncatula stress-associated protein gene (MtSAP1) leads to nitric oxide accumulation and confers osmotic and salt stress tolerance in transgenic tobacco
    Aurélie Charrier
    Elisabeth Planchet
    Delphine Cerveau
    Christine Gimeno-Gilles
    Isabelle Verdu
    Anis M. Limami
    Eric Lelièvre
    Planta, 2012, 236 : 567 - 577
  • [2] Medicago truncatula stress associated protein 1 gene (MtSAP1) overexpression confers tolerance to abiotic stress and impacts proline accumulation in transgenic tobacco
    Charrier, Aurelie
    Lelievre, Eric
    Limami, Anis M.
    Planchet, Elisabeth
    JOURNAL OF PLANT PHYSIOLOGY, 2013, 170 (09) : 874 - 877
  • [3] Overexpression of the Malus hupehensis MhNPR1 gene increased tolerance to salt and osmotic stress in transgenic tobacco
    Zhang, Ji-Yu
    Qu, Shen-Chun
    Qiao, Yu-Shan
    Zhang, Zhen
    Guo, Zhong-Ren
    MOLECULAR BIOLOGY REPORTS, 2014, 41 (03) : 1553 - 1561
  • [4] Overexpression of the Malus hupehensis MhNPR1 gene increased tolerance to salt and osmotic stress in transgenic tobacco
    Ji-Yu Zhang
    Shen-Chun Qu
    Yu-Shan Qiao
    Zhen Zhang
    Zhong-Ren Guo
    Molecular Biology Reports, 2014, 41 : 1553 - 1561
  • [5] Overexpression of MdIAA9 confers high tolerance to osmotic stress in transgenic tobacco
    Huang, Dong
    Wang, Qian
    Duan, Dingyue
    Dong, Qinglong
    Zhao, Shuang
    Zhang, Maoxue
    Jing, Guangquan
    Liu, Changhai
    van Nocker, Steve
    Ma, Fengwang
    Li, Chao
    PEERJ, 2019, 7
  • [6] Overexpression of Malus hupehensis MhSHN1 Gene Enhances Salt and Osmotic Stress Tolerance in Transgenic Tobacco Plants
    Zhang, J. Y.
    Luo, H. T.
    Guo, Z. R.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2018, 65 (06) : 857 - 864
  • [7] Overexpression of Malus hupehensis MhSHN1 Gene Enhances Salt and Osmotic Stress Tolerance in Transgenic Tobacco Plants
    J. Y. Zhang
    H. T. Luo
    Z. R. Guo
    Russian Journal of Plant Physiology, 2018, 65 : 857 - 864
  • [8] Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco
    Mukhopadhyay, A
    Vij, S
    Tyagi, AK
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (16) : 6309 - 6314
  • [9] Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice
    Vydehi Kanneganti
    Aditya Kumar Gupta
    Plant Molecular Biology, 2008, 66 : 445 - 462
  • [10] Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice
    Kanneganti, Vydehi
    Gupta, Aditya Kumar
    PLANT MOLECULAR BIOLOGY, 2008, 66 (05) : 445 - 462