共 40 条
Preparation of magnetic MnFe2O4-Cellulose aerogel composite and its kinetics and thermodynamics of Cu(II) adsorption
被引:61
作者:
Cui, Sheng
[1
,4
]
Wang, Xue
[1
,4
]
Zhang, Xin
[1
,3
,4
]
Xia, Wei
[2
]
Tang, Xianglong
[1
]
Lin, Benlan
[1
]
Wu, Qi
[3
]
Zhang, Xin
[1
,3
,4
]
Shen, Xiaodong
[1
,4
]
机构:
[1] Nanjing Tech Univ, Coll Mat Sci & Engn, State Key Lab Mat Oriented Chem Engn, Nanjing 210009, Jiangsu, Peoples R China
[2] Uppsala Univ, Dept Engn Sci, Div Appl Mat Sci, S-75121 Uppsala, Sweden
[3] Nanjing Gen Hosp, Dept Neurosurg, Nanjing 210002, Jiangsu, Peoples R China
[4] Jiangsu Collaborat Innovat Ctr Adv Inorgan Funct, Nanjing 210009, Jiangsu, Peoples R China
来源:
关键词:
Magnetic aerogel;
MnFe2O4-Cellulose;
Composites;
Copper ion;
Adsorption;
GRANULAR ACTIVATED CARBON;
HEAVY-METAL IONS;
GRAPHENE OXIDE;
CELLULOSE;
REMOVAL;
SILICA;
CU2+;
NANOPARTICLES;
CHROMIUM;
WATER;
D O I:
10.1007/s10570-017-1598-x
中图分类号:
TB3 [工程材料学];
TS [轻工业、手工业、生活服务业];
学科分类号:
0805 ;
080502 ;
0822 ;
摘要:
In this paper, a MnFe2O4-Cellulose magnetic composite aerogel (MnCA) with high adsorption capacity was fabricated by in situ incorporating MnFe2O4 to regenerated cellulose hydrogel matrix, followed by CO2 supercritical drying. A green synthetic strategy was performed by using renewable cellulose materials, environmentally benign cellulose solvents and facile synthetic conditions. The results showed that the obtained magnetic cellulose aerogel had a continuous and tiered three dimensional network with interconnected fibrils of about 30 nm in width, which was similar to those of cellulose aerogel prepared from NaOH/urea solution via CO2 supercritical drying. Meanwhile, they had high specific surface areas of 236-288 m(2)/g and total pore volume of 0.55-0.88 cm(3)/g. In addition, the hybrid aerogel showed superparamagnetism with maximum saturation magnetization reaching up to 18.53 emu/g. The magnetic nanocomposite aerogel could be used for biological and environmental applications. The adsorption test showed that MnCA had rapid adsorption rate and excellent adsorption ability of removing heavy metal ions in aqueous solution which could attain to 63.3 mg/g within 100 min. Moreover, all the composite aerogels exhibited good reusability and could be easily reused from the water after adsorption.
引用
收藏
页码:735 / 751
页数:17
相关论文