共 61 条
COVARIANCE MATRIX ESTIMATION FOR STATIONARY TIME SERIES
被引:64
作者:
Xia, Han
[1
]
Wu, Wei Biao
[1
]
机构:
[1] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
基金:
美国国家科学基金会;
关键词:
Autocovariance matrix;
banding;
large deviation;
physical dependence measure;
short range dependence;
spectral density;
stationary process;
tapering;
thresholding;
Toeplitz matrix;
CENTRAL-LIMIT-THEOREM;
LARGE DEVIATIONS;
QUADRATIC-FORMS;
LARGEST EIGENVALUE;
AUTOCOVARIANCE MATRICES;
MODERATE DEVIATIONS;
GAUSSIAN-PROCESSES;
RANDOM-VARIABLES;
PERIODOGRAM;
MAXIMUM;
D O I:
10.1214/11-AOS967
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We obtain a sharp convergence rate for banded covariance matrix estimates of stationary processes. A precise order of magnitude is derived for spectral radius of sample covariance matrices. We also consider a thresholded covariance matrix estimator that can better characterize sparsity if the true covariance matrix is sparse. As our main tool, we implement Toeplitz [Math. Ann. 70 (1911) 351-376] idea and relate eigenvalues of covariance matrices to the spectral densities or Fourier transforms of the covariances. We develop a large deviation result for quadratic forms of stationary processes using m-dependence approximation, under the framework of causal representation and physical dependence measures.
引用
收藏
页码:466 / 493
页数:28
相关论文