On some geometric properties of quasi-product production models

被引:11
作者
Alodan, Haila [1 ]
Chen, Bang-Yen [2 ]
Deshmukh, Sharief [1 ]
Vilcu, Gabriel-Eduard [3 ,4 ]
机构
[1] King Saud Univ, Dept Math, Riyadh 11495, Saudi Arabia
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[3] Univ Bucharest, Fac Math & Comp Sci, Res Ctr Geometry Topol & Algebra, Str Acad 14,Sect 1, Bucharest 70109, Romania
[4] Petr Gas Univ Ploiesti, Dept Math Modelling Econ Anal & Stat, Bd Bucuresti 39, Ploiesti 100680, Romania
关键词
Quasi-product production function; Constant return to scale; Marginal rate of substitution; Constant elasticity of substitution; Production hypersurface; Gauss-Kronecker curvature; PRODUCTION POSSIBILITY FRONTIER; CONSTANT ELASTICITY; HOMOTHETIC FUNCTIONS; COMPOSITE FUNCTIONS; CLASSIFICATION; HYPERSURFACES; SUBSTITUTION; DETERMINANTS;
D O I
10.1016/j.jmaa.2019.01.072
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we obtain classification results on the quasi-product production functions in terms of the geometry of their associated graph hypersurfaces, generalizing in a new setting some recent results concerning basic production models. In particular, we obtain several results on the geometry of Spillman-Mitscherlich and transcendental production functions. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:693 / 711
页数:19
相关论文
共 33 条
[1]   A NOTE ON THE PRODUCTION POSSIBILITY FRONTIER WITH PURE PUBLIC INTERMEDIATE GOODS [J].
ABE, K ;
OKAMOTO, H ;
TAWADA, M .
CANADIAN JOURNAL OF ECONOMICS-REVUE CANADIENNE D ECONOMIQUE, 1986, 19 (02) :351-356
[2]   Solution of the rectangular mxn generalized bisymmetry equation and of the problem of consistent aggregation [J].
Aczel, J ;
Maksa, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 203 (01) :104-126
[3]  
[Anonymous], 2012, J. Adv. Math. Stud.
[4]  
[Anonymous], 1932, THEORY OF WAGES
[5]  
[Anonymous], 1928, American Economic Review, Vol
[6]   HESSIAN DETERMINANTS OF COMPOSITE FUNCTIONS WITH APPLICATIONS FOR PRODUCTION FUNCTIONS IN ECONOMICS [J].
Aydin, M. E. ;
Ergut, M. .
KRAGUJEVAC JOURNAL OF MATHEMATICS, 2014, 38 (02) :259-268
[7]   COMPOSITE FUNCTIONS WITH ALLEN DETERMINANTS AND THEIR APPLICATIONS TO PRODUCTION MODELS IN ECONOMICS [J].
Aydin, M. Evren ;
Ergut, Mahmut .
TAMKANG JOURNAL OF MATHEMATICS, 2014, 45 (04) :427-435
[8]   Classification of Quasi-Sum Production Functions with Allen Determinants [J].
Aydin, Muhittin Evren ;
Mihai, Adela .
FILOMAT, 2015, 29 (06) :1351-1359
[9]  
Chen B.Y., 2011, Pseudo-Riemannian Geometry, -invariants and Applications
[10]  
Chen B.-Y., 1973, Geometry of slant submanifolds