A neural network compression method based on knowledge-distillation and parameter quantization for the bearing fault diagnosis

被引:49
作者
Ji, Mengyu [1 ]
Peng, Gaoliang [1 ]
Li, Sijue [1 ]
Cheng, Feng [1 ]
Chen, Zhao [1 ]
Li, Zhixiong [2 ,4 ]
Du, Haiping [3 ]
机构
[1] Harbin Inst Technol, State Key Lab Robot Technol & Syst, Harbin 150001, Peoples R China
[2] Yonsei Univ, Yonsei Frontier Lab, Seoul 03722, South Korea
[3] Univ Wollongong, Fac Engn Informat & Sci, Wollongong, NSW 2522, Australia
[4] Opole Univ Technol, Fac Mech Engn, PL-45758 Opole, Poland
基金
中国国家自然科学基金;
关键词
Bearing fault diagnosis; Neural network compression method; Knowledge-distillation; Parameter quantization; Field programmable gate array (FPGA); MACHINERY;
D O I
10.1016/j.asoc.2022.109331
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Condition monitoring and fault diagnosis have been critical for the optimal scheduling of machines, improving the system reliability and the reducing maintenance cost. In recent years, various of methods based on the deep learning method have made the great progress in the field of the mechanical fault diagnosis. However, there is a conflict between the massive parameters of the fault diagnosis networks and the limited computing resource of the embedded platforms. It is difficult to deploy the trained network on the small scale embedded platforms (like field programmable gate array (FPGA)) in the actual industrial situations. This seriously hinders the practical process of the intelligent fault diagnosis method. To address this problem, a new neural network compression method based on knowledge-distillation (K-D) and parameter quantization is proposed in this paper. In the proposed method, a large scale deep neural network with multiple convolutional layers and fully-connected layers is designed and trained as the teacher network. Then a small scale network with just one convolutional layer and one fully-connected layer is designed as the student network. When training the student network, the K-D process is conducted to improve the accuracy of the student network. After the training process, the parameter quantization is conducted to further compress the scale of the student network. Experimental results on the field programmable gate array (FPGA) are presented to demonstrate the effectiveness of the proposed method. The results show that the proposed method can greatly compress the scales of the fault diagnosis networks for over 10 times at the cost of the minimal loss of the accuracy.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Layer Regeneration Network With Parameter Transfer and Knowledge Distillation for Intelligent Fault Diagnosis of Bearing Using Class Unbalanced Sample
    Li, Fudong
    Chen, Jinglong
    He, Shuilong
    Zhou, Zitong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [2] Intelligent Fault Diagnosis Method Based on Neural Network Compression for Rolling Bearings
    Wang, Xinren
    Hu, Dongming
    Fan, Xueqi
    Liu, Huiyi
    Yang, Chenbin
    SYMMETRY-BASEL, 2024, 16 (11):
  • [3] A rolling bearing fault diagnosis method based on multi-scale knowledge distillation and continual learning
    Xia, Yifei
    Gao, Jun
    Shao, Xing
    Wang, Cuixiang
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (12): : 276 - 285
  • [4] A Multi-Scale Convolutional Neural Network with Self-Knowledge Distillation for Bearing Fault Diagnosis
    Yu, Jiamao
    Hu, Hexuan
    MACHINES, 2024, 12 (11)
  • [5] Network lightweight method based on knowledge distillation is applied to RV reducer fault diagnosis
    He, Feifei
    Liu, Chang
    Wang, Mengdi
    Yang, Enshan
    Liu, Xiaoqin
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (09)
  • [6] Convolutional Neural Network Based Bearing Fault Diagnosis
    Duy-Tang Hoang
    Kang, Hee-Jun
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2017, PT II, 2017, 10362 : 105 - 111
  • [7] Bearing Fault Diagnosis with a Feature Fusion Method Based on an Ensemble Convolutional Neural Network and Deep Neural Network
    Li, Hongmei
    Huang, Jinying
    Ji, Shuwei
    SENSORS, 2019, 19 (09)
  • [8] A Novel Method for Bearing Fault Diagnosis Based on a Parallel Deep Convolutional Neural Network
    Lin, Zhuonan
    Wang, Yongxing
    Guo, Yining
    Tong, Xiangrui
    Wei, Fanrong
    Tong, Ning
    SYMMETRY-BASEL, 2024, 16 (04):
  • [9] Bearing Fault Diagnosis Method of Deep Convolutional Neural Network Based on Multiwavelet Decomposition
    Tao T.
    Zhou W.
    Kuang J.
    Xu G.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2024, 5 (31-41): : 31 - 41
  • [10] Bearing fault diagnosis method based on improved deep residual Siamese neural network
    Qian, Chen
    Gao, Jun
    Shao, Xing
    Wang, Cuixiang
    Yuan, Jianhua
    INSIGHT, 2024, 66 (03) : 174 - 181