THE INVERSE GALOIS PROBLEM FOR PSL2(Fp)

被引:10
作者
Zywina, David [1 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
REPRESENTATIONS;
D O I
10.1215/00127094-3129271
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the simple group PSL2 (F-p) occurs as the Galois group of an extension of the rationals for all primes p >= 5. We obtain our Galois extensions by studying the Galois action on the second etale cohomology groups of a specific elliptic surface.
引用
收藏
页码:2253 / 2292
页数:40
相关论文
共 29 条
[1]  
[Anonymous], 1973, GRAD TEXTS MATH
[2]  
[Anonymous], P RUTG GROUP THEOR Y
[3]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[4]   Conjecture of inertia moderated by Serre [J].
Caruso, Xavier .
INVENTIONES MATHEMATICAE, 2008, 171 (03) :629-699
[5]   Galois groups via Atkin-Lehner twists [J].
Clark, Pete L. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (03) :617-624
[6]   INTERSECTION NUMBERS OF SECTIONS OF ELLIPTIC SURFACES [J].
COX, DA ;
ZUCKER, S .
INVENTIONES MATHEMATICAE, 1979, 53 (01) :1-44
[7]   REPRESENTATIONS ASSOCIATED WITH ELLIPTIC-SURFACES [J].
COX, DA ;
PARRY, WR .
PACIFIC JOURNAL OF MATHEMATICS, 1984, 114 (02) :309-323
[8]  
Curtis R.T., 1985, Atlas of Finite Groups
[9]  
Gross BH., 2011, Arithmetic of L-Functions, V7, P169, DOI 10.1090/pcms/018/08
[10]  
Khare C, 2009, INVENT MATH, V178, P485, DOI 10.1007/s00222-009-0205-7