Fundamental and practical approaches for single-cell ATAC-seq analysis

被引:8
|
作者
Shi, Peiyu [1 ]
Nie, Yage [2 ]
Yang, Jiawen [1 ]
Zhang, Weixing [1 ]
Tang, Zhongjie [1 ]
Xu, Jin [1 ]
机构
[1] Sun Yat Sen Univ, Sch Life Sci, State Key Lab Biocontrol, Guangzhou 510275, Peoples R China
[2] Sun Yat Sen Univ, Zhongshan Sch Med, Guangzhou 510275, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Chromatin accessibility; scATAC-seq; Data analysis; Bioinformatic tools; CHROMATIN ACCESSIBILITY; REVEALS; GENOME; CANCER; RNA;
D O I
10.1007/s42994-022-00082-5
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Assays for transposase-accessible chromatin through high-throughput sequencing (ATAC-seq) are effective tools in the study of genome-wide chromatin accessibility landscapes. With the rapid development of single-cell technology, open chromatin regions that play essential roles in epigenetic regulation have been measured at the single-cell level using single-cell ATAC-seq approaches. The application of scATAC-seq has become as popular as that of scRNA-seq. However, owing to the nature of scATAC-seq data, which are sparse and noisy, processing the data requires different methodologies and empirical experience. This review presents a practical guide for processing scATAC-seq data, from quality evaluation to downstream analysis, for various applications. In addition to the epigenomic profiling from scATAC-seq, we also discuss recent studies in which the function of non-coding variants has been investigated based on cell type-specific cis-regulatory elements and how to use the by-product genetic information obtained from scATAC-seq to infer single-cell copy number variants and trace cell lineage. We anticipate that this review will assist researchers in designing and implementing scATAC-seq assays to facilitate research in diverse fields.
引用
收藏
页码:212 / 223
页数:12
相关论文
共 50 条
  • [1] Fundamental and practical approaches for single-cell ATAC-seq analysis
    Peiyu Shi
    Yage Nie
    Jiawen Yang
    Weixing Zhang
    Zhongjie Tang
    Jin Xu
    aBIOTECH, 2022, 3 : 212 - 223
  • [2] Fundamental and practical approaches for single-cell ATAC-seq analysis (vol 3, pg 212, 2022)
    Shi, Peiyu
    Nie, Yage
    Yang, Jiawen
    Zhang, Weixing
    Tang, Zhongjie
    Xu, Jin
    ABIOTECH, 2024, 5 (02) : 239 - 246
  • [3] Single-cell ATAC-seq: strength in numbers
    Pott, Sebastian
    Lieb, Jason D.
    GENOME BIOLOGY, 2015, 16
  • [4] Single-cell ATAC-seq: strength in numbers
    Sebastian Pott
    Jason D. Lieb
    Genome Biology, 16
  • [5] simATAC: a single-cell ATAC-seq simulation framework
    Zeinab Navidi
    Lin Zhang
    Bo Wang
    Genome Biology, 22
  • [6] Assessment of computational methods for the analysis of single-cell ATAC-seq data
    Chen, Huidong
    Lareau, Caleb A.
    Andreani, Tommaso
    Vinyard, Michael E.
    Garcia, Sara P.
    Clement, Kendell
    Andrade-Navarro, Miguel
    Buenrostro, Jason D.
    Pinello, Luca
    GENOME BIOLOGY, 2019, 20 (01)
  • [7] simATAC: a single-cell ATAC-seq simulation framework
    Navidi, Zeinab
    Zhang, Lin
    Wang, Bo
    GENOME BIOLOGY, 2021, 22 (01)
  • [8] Assessment of computational methods for the analysis of single-cell ATAC-seq data
    Huidong Chen
    Caleb Lareau
    Tommaso Andreani
    Michael E. Vinyard
    Sara P. Garcia
    Kendell Clement
    Miguel A. Andrade-Navarro
    Jason D. Buenrostro
    Luca Pinello
    Genome Biology, 20
  • [9] Modeling fragment counts improves single-cell ATAC-seq analysis
    Laura D. Martens
    David S. Fischer
    Vicente A. Yépez
    Fabian J. Theis
    Julien Gagneur
    Nature Methods, 2024, 21 : 28 - 31
  • [10] Classifying cells with Scasat, a single-cell ATAC-seq analysis tool
    Baker, Syed Murtuza
    Rogerson, Connor
    Hayes, Andrew
    Sharrocks, Andrew D.
    Rattray, Magnus
    NUCLEIC ACIDS RESEARCH, 2019, 47 (02)