Regularity Criterion for Weak Solutions to the Navier-Stokes Equations in Terms of the Gradient of the Pressure

被引:23
作者
Fan, Jishan [2 ]
Ozawa, Tohru [1 ]
机构
[1] Waseda Univ, Dept Appl Phys, Tokyo 1698555, Japan
[2] Nanjing Forestry Univ, Dept Appl Math, Nanjing 210037, Peoples R China
关键词
D O I
10.1155/2008/412678
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a regularity criterion. del pi is an element of L-2/3 (0,T; BMO) for weak solutions to the Navier-Stokes equations in three-space dimensions. This improves the available result with L-2/3 (0,T; L-infinity). Copyright (C) 2008 J. Fan and T. Ozawa.
引用
收藏
页数:6
相关论文
共 19 条
[1]   Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations [J].
Berselli, LC ;
Galdi, GP .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (12) :3585-3595
[2]   Regularity criterion in terms of pressure for the Navier-Stokes equations [J].
Chae, DH ;
Lee, JH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 46 (05) :727-735
[3]   A note on BMO and its application [J].
Chen, JC ;
Zhu, XR .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 303 (02) :696-698
[4]  
Chen QL, 2007, P AM MATH SOC, V135, P1829
[5]  
daVeiga HB, 1995, CHINESE ANN MATH B, V16, P407
[6]   L3,∞-solutions of the Navier-Stokes equations and backward uniqueness [J].
Escauriaza, L ;
Seregin, G ;
Sverák, V .
RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (02) :211-250
[7]   INITIAL VALUE-PROBLEM FOR NAVIER-STOKES EQUATIONS WITH DATA IN LP [J].
FABES, EB ;
JONES, BF ;
RIVIERE, NM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1972, 45 (03) :222-&
[8]   On regularity criteria for the n-dimensional Navier-Stokes equations in terms of the pressure [J].
Fan, Jishan ;
Jiang, Song ;
Ni, Guoxi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (11) :2963-2979
[9]   SOLUTIONS FOR SEMILINEAR PARABOLIC EQUATIONS IN LP AND REGULARITY OF WEAK SOLUTIONS OF THE NAVIER-STOKES SYSTEM [J].
GIGA, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 62 (02) :186-212
[10]   Bilinear estimates in BMO and the Navier-Stokes equations [J].
Kozono, H ;
Taniuchi, Y .
MATHEMATISCHE ZEITSCHRIFT, 2000, 235 (01) :173-194