Higher-order nonlinear Schrodinger equations with singular data

被引:0
|
作者
Hayashi, Nakao [1 ]
Naumkin, Pavel I. [2 ]
Ogawa, Takayoshi [3 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
[2] UNAM, Ctr Ciencias Matemat, Campus Morelia,AP 61-3 Xangari, Morelia 58089, Michoacan, Mexico
[3] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
关键词
Higher-order nonlinear Schrodinger equation; Local existence; Weighted Sobolev space; WELL-POSEDNESS; ILL-POSEDNESS; SPACES; 2D;
D O I
10.1007/s00028-017-0400-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem for the higher-order nonlinear Schrodinger equation where . We prove local existence of solutions for the case of singular initial data including the Dirac delta function.
引用
收藏
页码:263 / 276
页数:14
相关论文
共 50 条
  • [31] Higher-order Schrodinger and Hartree-Fock equations
    Carles, Remi
    Lucha, Wolfgang
    Moulay, Emmanuel
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (12)
  • [32] Strichartz estimates for higher-order Schrodinger equations and their applications
    Hong, Younghun
    Kwak, Chulkwang
    Yang, Changhun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 324 : 41 - 75
  • [33] Tunneling effects of the nonautonomous rogue waves for the coupled higher-order nonlinear Schrodinger equations
    Su, Chuan-Qi
    Wang, Yong-Yan
    Li, Jian-Guang
    APPLIED MATHEMATICS LETTERS, 2017, 64 : 235 - 240
  • [34] Explode-decay solitons in the generalized inhomogeneous higher-order nonlinear Schrodinger equations
    Radha, Ramaswamy
    Kumar, V. Ramesh
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2007, 62 (7-8): : 381 - 386
  • [35] Combined solitary-wave solution for coupled higher-order nonlinear Schrodinger equations
    Tian, JP
    Tian, HP
    Li, ZH
    Zhou, GS
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2004, 21 (11) : 1908 - 1912
  • [36] Inverse Scattering Method for Constructing Multisoliton Solutions of Higher-Order Nonlinear Schrodinger Equations
    Wang, Xiu-Bin
    Tian, Shou-Fu
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2023, 13 (02) : 213 - 229
  • [37] Peregrine Solitons of the Higher-Order, Inhomogeneous, Coupled, Discrete, and Nonlocal Nonlinear Schrodinger Equations
    Uthayakumar, T.
    Al Sakkaf, L.
    Al Khawaja, U.
    FRONTIERS IN PHYSICS, 2020, 8
  • [38] Stability of solitons described by nonlinear Schrodinger-type equations with higher-order dispersion
    Karpman, VI
    Shagalov, AG
    PHYSICA D-NONLINEAR PHENOMENA, 2000, 144 (1-2) : 194 - 210
  • [39] A higher-order perturbation analysis of the nonlinear Schrodinger equation
    Bonetti, J.
    Hernandez, S. M.
    Fierens, P., I
    Grosz, D. F.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 72 : 152 - 161
  • [40] Painleve analysis of a higher-order nonlinear Schrodinger equation
    Sakovich, SY
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (09) : 2527 - 2529