Higher-order nonlinear Schrodinger equations with singular data

被引:0
作者
Hayashi, Nakao [1 ]
Naumkin, Pavel I. [2 ]
Ogawa, Takayoshi [3 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
[2] UNAM, Ctr Ciencias Matemat, Campus Morelia,AP 61-3 Xangari, Morelia 58089, Michoacan, Mexico
[3] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
关键词
Higher-order nonlinear Schrodinger equation; Local existence; Weighted Sobolev space; WELL-POSEDNESS; ILL-POSEDNESS; SPACES; 2D;
D O I
10.1007/s00028-017-0400-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem for the higher-order nonlinear Schrodinger equation where . We prove local existence of solutions for the case of singular initial data including the Dirac delta function.
引用
收藏
页码:263 / 276
页数:14
相关论文
共 15 条
[1]   Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrodinger equation [J].
Bejenaru, I ;
Tao, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 233 (01) :228-259
[2]   Low regularity solutions for a 2D quadratic nonlinear Schrodinger equation [J].
Bejenaru, Ioan ;
De Silva, Daniela .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (11) :5805-5830
[3]   On the semirelativistic Hartree-type equation [J].
Cho, Yonggeun ;
Ozawa, Tohru .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (04) :1060-1074
[4]   NOTE ON A MODIFICATION TO THE NON-LINEAR SCHRODINGER-EQUATION FOR APPLICATION TO DEEP-WATER WAVES [J].
DYSTHE, KB .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1979, 369 (1736) :105-114
[5]  
Fedoryuk MV., 1987, ASYMPTOTICS INTEGRAL
[6]   Motion and expansion of a viscous vortex ring. Part 1. A higher-order asymptotic formula for the velocity [J].
Fukumoto, Y ;
Moffatt, HK .
JOURNAL OF FLUID MECHANICS, 2000, 417 :1-45
[7]  
Iwabuchi T, 2015, T AM MATH SOC, V367, P2613
[8]   Stability of solitons described by nonlinear Schrodinger-type equations with higher-order dispersion [J].
Karpman, VI ;
Shagalov, AG .
PHYSICA D-NONLINEAR PHENOMENA, 2000, 144 (1-2) :194-210
[9]   Stabilization of soliton instabilities by higher-order dispersion: Fourth-order nonlinear Schrodinger-type equations [J].
Karpman, VI .
PHYSICAL REVIEW E, 1996, 53 (02) :R1336-R1339
[10]   On nonlinear Schrodinger equations .2. H-S-solutions and unconditional well-posedness [J].
Kato, T .
JOURNAL D ANALYSE MATHEMATIQUE, 1995, 67 :281-306