Optimal orientations of products of paths and cycles

被引:17
作者
Koh, KM
Tay, EG
机构
[1] Department of Mathematics, National University of Singapore, Lower Kent Ridge Road
关键词
path; cycle; bipartite graph; diameter; strong orientation;
D O I
10.1016/S0166-218X(97)00017-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a graph G, let D(G) be the family of strong orientations of G, d(G) = min{d(D)\D is an element of D (G)) and rho(G) = d(G)-d(G), where d(G) and d(D) are the diameters of G and D respectively. in this paper we show that rho(G)=0 if G is a cartesian product of(1) paths, and (2) paths and cycles, which satisfy some mild conditions.
引用
收藏
页码:163 / 174
页数:12
相关论文
共 19 条
[1]   ROBBINS THEOREM FOR MIXED MULTIGRAPHS [J].
BOESCH, F ;
TINDELL, R .
AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (09) :716-719
[2]  
CHVATAL V, 1978, J COMB THEORY B, V24, P61, DOI 10.1016/0095-8956(78)90078-3
[3]   MINIMIZING THE MAXIMIZING THE DIAMETER OF ORIENTATIONS OF GRAPHS [J].
GUTIN, G .
GRAPHS AND COMBINATORICS, 1994, 10 (03) :225-230
[4]  
Gutin G., 1989, VESTSI ACAD NAVUK BS, V5, P101
[5]   The minimum diameter of orientations of complete multipartite graphs [J].
Koh, KM ;
Tan, BP .
GRAPHS AND COMBINATORICS, 1996, 12 (04) :333-339
[6]   The diameter of an orientation of a complete multipartite graph [J].
Koh, KM ;
Tan, BP .
DISCRETE MATHEMATICS, 1996, 149 (1-3) :131-139
[7]  
KOH KM, IN PRESS NETWORKS
[8]  
KOH KM, UNPUB OPTIMAL ORIENT
[9]  
KOH KM, 1992, REP REP
[10]  
Maurer SB, 1980, MATH MAG, V53, P67, DOI [DOI 10.1080/0025570X.1980.11976837, DOI 10.1080/0025570X.1980.11976831]