PONTRYAGIN'S PRINCIPLE FOR LOCAL SOLUTIONS OF OPTIMAL CONTROL GOVERNED BY THE 2D NAVIER-STOKES EQUATIONS WITH MIXED CONTROL-STATE CONSTRAINTS

被引:2
作者
Yu, Huaiqiang [1 ]
Liu, Bin [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Optimal control; 2D Navier-Stokes equation; Pontryagin's principle; State constraints; Control-state constraints; Local optimal solution; MAXIMUM PRINCIPLE; CONTROLLABILITY;
D O I
10.3934/mcrf.2012.2.61
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the Pontryagin's principle of optimal control problems governed by the 2D Navier-Stokes equations with integral state constraints and coupled integral control-state constraints. As an application, the necessary conditions for the local solution in the sense of L-r(0, T; L-2 (Omega)) (2 < r < infinity) are also obtained.
引用
收藏
页码:61 / 80
页数:20
相关论文
共 21 条
[1]   RECENT RESULTS ON THE CONTROLLABILITY OF LINEAR COUPLED PARABOLIC PROBLEMS: A SURVEY [J].
Ammar-Khodja, Farid ;
Benabdallah, Assia ;
Gonzalez-Burgos, Manuel ;
de Teresa, Luz .
MATHEMATICAL CONTROL AND RELATED FIELDS, 2011, 1 (03) :267-306
[2]   GLOBAL CARLEMAN INEQUALITIES FOR STOKES AND PENALIZED STOKES EQUATIONS [J].
Badra, Mehdi .
MATHEMATICAL CONTROL AND RELATED FIELDS, 2011, 1 (02) :149-175
[3]   Optimal control of Navier-Stokes equations with periodic inputs [J].
Barbu, V .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 31 (1-2) :15-31
[4]   The time optimal control of Navier-Stokes equations [J].
Barbu, V .
SYSTEMS & CONTROL LETTERS, 1997, 30 (2-3) :93-100
[5]   GLOBAL CARLEMAN ESTIMATE ON A NETWORK FOR THE WAVE EQUATION AND APPLICATION TO AN INVERSE PROBLEM [J].
Baudouin, Lucie ;
Crepeau, Emmanuelle ;
Valein, Julie .
MATHEMATICAL CONTROL AND RELATED FIELDS, 2011, 1 (03) :307-330
[6]  
Casas E, 1998, INT S NUM M, V126, P89
[7]   Pontryagin's principle for local solutions of control problems with mixed control-state constraints [J].
Casas, E ;
Raymond, JP ;
Zidani, H .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (04) :1182-1203
[8]  
Cesari L., 1983, Applications of Mathematics, V17
[9]   OBSERVABILITY OF HEAT PROCESSES BY TRANSMUTATION WITHOUT GEOMETRIC RESTRICTIONS [J].
Ervedoza, Sylvain ;
Zuazua, Enrique .
MATHEMATICAL CONTROL AND RELATED FIELDS, 2011, 1 (02) :177-187
[10]   NECESSARY AND SUFFICIENT CONDITIONS FOR OPTIMAL CONTROLS IN VISCOUS-FLOW PROBLEMS [J].
FATTORINI, HO ;
SRITHARAN, SS .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 :211-251