Multiscaffold DNA Origami Nanoparticle Waveguides

被引:64
|
作者
Klein, William P. [1 ]
Schmidt, Charles N. [1 ]
Rapp, Blake [2 ]
Takabayashi, Sadao [1 ]
Knowlton, William B. [1 ,2 ]
Lee, Jeunghoon [3 ]
Yurke, Bernard [1 ,2 ]
Hughes, William L. [1 ]
Graugnard, Elton [1 ]
Kuang, Wan [2 ]
机构
[1] Boise State Univ, Dept Mat Sci & Engn, Boise, ID 83725 USA
[2] Boise State Univ, Dept Elect & Comp Engn, Boise, ID 83725 USA
[3] Boise State Univ, Dept Chem & Biochem, Boise, ID 83725 USA
基金
美国国家科学基金会;
关键词
Self-Assembly; DNA nanotechnology; DNA origami; plasmonics; darkfield microscopy; atomic force microscopy; ELECTROMAGNETIC ENERGY-TRANSPORT; OPTICAL-PROPERTIES; METAL NANOPARTICLE; PLASMONIC NANOSTRUCTURES; DIFFRACTION LIMIT; SHAPES; RESONANCES; ARRAYS; CHAINS; TILES;
D O I
10.1021/nl401879r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
DNA origami templated self-assembly has shown its potential in creating rationally designed nanophotonic devices in a parallel and repeatable manner. In this investigation, we employ a multiscaffold DNA origami approach to fabricate linear waveguides of 10 nm diameter gold nanoparticles. This approach provides independent control over nanoparticle separation and spatial arrangement. The waveguides were characterized using atomic force microscopy and far-field polarization spectroscopy. This work provides a path toward large-scale plasmonic circuitry.
引用
收藏
页码:3850 / 3856
页数:7
相关论文
共 50 条
  • [31] DNA nanostructure-directed assembly of metal nanoparticle superlattices
    Julin, Sofia
    Nummelin, Sami
    Kostiainen, Mauri A.
    Linko, Veikko
    JOURNAL OF NANOPARTICLE RESEARCH, 2018, 20 (05)
  • [32] On the Stability of DNA Origami Nanostructures in Low-Magnesium Buffers
    Kielar, Charlotte
    Xin, Yang
    Shen, Boxuan
    Kostiainen, Mauri A.
    Grundmeier, Guido
    Linko, Veikko
    Keller, Adrian
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (30) : 9470 - 9474
  • [33] Membrane-Assisted Growth of DNA Origami Nanostructure Arrays
    Kocabey, Samet
    Kempter, Susanne
    List, Jonathan
    Xing, Yongzheng
    Bae, Wooli
    Schiffels, Daniel
    Shih, William M.
    Simmel, Friedrich C.
    Liedl, Tim
    ACS NANO, 2015, 9 (04) : 3530 - 3539
  • [34] DNA Origami Structures Directly Assembled from Intact Bacteriophages
    Nickels, Philipp C.
    Ke, Yonggang
    Jungmann, Ralf
    Smith, David M.
    Leichsenring, Marc
    Shih, William M.
    Liedl, Tim
    Hogberg, Bjorn
    SMALL, 2014, 10 (09) : 1765 - 1769
  • [35] Crystalline Two-Dimensional DNA-Origami Arrays
    Liu, Wenyan
    Zhong, Hong
    Wang, Risheng
    Seeman, Nadrian C.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (01) : 264 - 267
  • [36] Topogami: Topologically Linked DNA Origami
    Sakai, Yusuke
    Wilkens, Gerrit D. D.
    Wolski, Karol
    Zapotoczny, Szczepan
    Heddle, Jonathan G. G.
    ACS NANOSCIENCE AU, 2021, 2 (01): : 57 - 63
  • [37] How We Make DNA Origami
    Wagenbauer, Klaus F.
    Engelhardt, Floris A. S.
    Stahl, Evi
    Hechtl, Vera K.
    Stoemmer, Pierre
    Seebacher, Fabian
    Meregalli, Letizia
    Ketterer, Philip
    Gerling, Thomas
    Dietz, Hendrik
    CHEMBIOCHEM, 2017, 18 (19) : 1873 - 1885
  • [38] DNA origami and biotechnology applications: a perspective
    Chandrasekaran, Arun Richard
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2016, 91 (04) : 843 - 846
  • [39] Advancing Biophysics Using DNA Origami
    Engelen, Wouter
    Dietz, Hendrik
    ANNUAL REVIEW OF BIOPHYSICS, VOL 50, 2021, 2021, 50 : 469 - 492
  • [40] Nanopores formed by DNA origami: A review
    Bell, Nicholas A. W.
    Keyser, Ulrich F.
    FEBS LETTERS, 2014, 588 (19) : 3564 - 3570