Multiscaffold DNA Origami Nanoparticle Waveguides

被引:64
|
作者
Klein, William P. [1 ]
Schmidt, Charles N. [1 ]
Rapp, Blake [2 ]
Takabayashi, Sadao [1 ]
Knowlton, William B. [1 ,2 ]
Lee, Jeunghoon [3 ]
Yurke, Bernard [1 ,2 ]
Hughes, William L. [1 ]
Graugnard, Elton [1 ]
Kuang, Wan [2 ]
机构
[1] Boise State Univ, Dept Mat Sci & Engn, Boise, ID 83725 USA
[2] Boise State Univ, Dept Elect & Comp Engn, Boise, ID 83725 USA
[3] Boise State Univ, Dept Chem & Biochem, Boise, ID 83725 USA
基金
美国国家科学基金会;
关键词
Self-Assembly; DNA nanotechnology; DNA origami; plasmonics; darkfield microscopy; atomic force microscopy; ELECTROMAGNETIC ENERGY-TRANSPORT; OPTICAL-PROPERTIES; METAL NANOPARTICLE; PLASMONIC NANOSTRUCTURES; DIFFRACTION LIMIT; SHAPES; RESONANCES; ARRAYS; CHAINS; TILES;
D O I
10.1021/nl401879r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
DNA origami templated self-assembly has shown its potential in creating rationally designed nanophotonic devices in a parallel and repeatable manner. In this investigation, we employ a multiscaffold DNA origami approach to fabricate linear waveguides of 10 nm diameter gold nanoparticles. This approach provides independent control over nanoparticle separation and spatial arrangement. The waveguides were characterized using atomic force microscopy and far-field polarization spectroscopy. This work provides a path toward large-scale plasmonic circuitry.
引用
收藏
页码:3850 / 3856
页数:7
相关论文
共 50 条
  • [21] Study of DNA Origami Dimerization and Dimer Dissociation Dynamics and of the Factors that Limit Dimerization
    Liber, Miran
    Tomov, Toma E.
    Tsukanov, Roman
    Berger, Yaron
    Popov, Mary
    Khara, Dinesh C.
    Nir, Eyal
    SMALL, 2018, 14 (23)
  • [22] Alignment of Gold Nanoparticle-Decorated DNA Origami Nanotubes: Substrate Prepatterning versus Molecular Combing
    Teschome, Bezu
    Facsko, Stefan
    Gothelf, Kurt V.
    Keller, Adrian
    LANGMUIR, 2015, 31 (46) : 12823 - 12829
  • [23] The Effect of Nanoparticle Composition on the Surface-Enhanced Raman Scattering Performance of Plasmonic DNA Origami Nanoantennas
    Kanehira, Yuya
    Tapio, Kosti
    Wegner, Gino
    Kogikoski Jr, Sergio
    Ruestig, Sibylle
    Prietzel, Claudia
    Busch, Kurt
    Bald, Ilko
    ACS NANO, 2023, 17 (21) : 21227 - 21239
  • [24] The Energy Landscape for the Self-Assembly of a Two-Dimensional DNA Origami Complex
    Fern, Joshua
    Lu, Jennifer
    Schulman, Rebecca
    ACS NANO, 2016, 10 (02) : 1836 - 1844
  • [25] Unidirectional Scaffold-Strand Arrangement in DNA Origami
    Han, Dongran
    Jiang, Shuoxing
    Samanta, Anirban
    Liu, Yan
    Yan, Hao
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (34) : 9031 - 9034
  • [26] Elucidating the Mechanical Energy for Cyclization of a DNA Origami Tile
    Li, Ruixin
    Chen, Haorong
    Lee, Hyeongwoon
    Choi, Jong Hyun
    APPLIED SCIENCES-BASEL, 2021, 11 (05): : 1 - 15
  • [27] Metallization of Branched DNA Origami for Nanoelectronic Circuit Fabrication
    Liu, Jianfei
    Geng, Yanli
    Pound, Elisabeth
    Gyawali, Shailendra
    Ashton, Jeffrey R.
    Hickey, John
    Woolley, Adam T.
    Harb, John N.
    ACS NANO, 2011, 5 (03) : 2240 - 2247
  • [28] Evolution of DNA origami scaffolds
    Chandrasekaran, Arun Richard
    Pushpanathan, Muthuirulan
    Halvorsen, Ken
    MATERIALS LETTERS, 2016, 170 : 221 - 224
  • [29] A Gold-Nanoparticle-Based SERS Reporter that Rolls on DNA Origami Templates
    Liu, Bing
    Ren, Shaokang
    Xing, Yikang
    Teng, Nan
    Wang, Jun
    Zhu, Dan
    Su, Shao
    Peng, Hongzhen
    Wang, Lihua
    Wang, Lianhui
    Chao, Jie
    CHEMNANOMAT, 2017, 3 (10): : 760 - 763
  • [30] DNA Origami Route for Nanophotonics
    Kuzyk, Anton
    Jungmann, Ralf
    Acuna, Guillermo P.
    Liu, Na
    ACS PHOTONICS, 2018, 5 (04): : 1151 - 1163