Approximation of a geometric set covering problem

被引:5
作者
Kovaleva, S [1 ]
Spieksma, FCR [1 ]
机构
[1] Maastricht Univ, Dept Math, POB 616, NL-6200 MD Maastricht, Netherlands
来源
ALGORITHMS AND COMPUTATION, PROCEEDINGS | 2001年 / 2223卷
关键词
D O I
10.1007/3-540-45678-3_42
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider a special set covering problem. This problem is a generalization of finding a minimum clique cover in an interval graph. When formulated as an integer program, the 0-1 constraint matrix of this integer program can be partitioned into an interval matrix and a special 0-1 matrix with a single I per column. We show that the value of this formulation is bounded by (2k)/(k+1) times the value of the LP-relaxation, where k is the maximum row sum of the special matrix. For the "smallest" difficult case, i.e., k = 2, this bound is tight. Also we provide an O(n) (3)/(2)-approximation algorithm in case k = 2.
引用
收藏
页码:493 / 501
页数:9
相关论文
共 11 条
  • [1] AERTS J, 1998, INT TEST C WASH DC O
  • [2] Arora S., 1992, Proceedings 33rd Annual Symposium on Foundations of Computer Science (Cat. No.92CH3188-0), P14, DOI 10.1109/SFCS.1992.267823
  • [3] Ausiello G, 1999, COMPLEXITY APPROXIMA, DOI DOI 10.1007/978-3-642-58412-1
  • [4] BARNOY A, 1999, P 31 ACM S THEOR COM
  • [5] Primal-dual approximation algorithms for integral flow and multicut in trees
    Garg, N
    Vazirani, VV
    Yannakakis, M
    [J]. ALGORITHMICA, 1997, 18 (01) : 3 - 20
  • [6] Golumbic MC., 1980, Algorithmic Graph Theory and Perfect Graphs
  • [7] HOCHBAUM DS, 1998, LECT NOTES COMPUTER, V1444, P99
  • [8] TOTALLY-BALANCED AND GREEDY MATRICES
    HOFFMAN, AJ
    KOLEN, AWJ
    SAKAROVITCH, M
    [J]. SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1985, 6 (04): : 721 - 730
  • [9] KOVALEVA S, 2001, 0101 M MASSTR U DEP
  • [10] Schrijver A., 1998, THEORY LINEAR INTEGE