New integrable problems in a rigid body dynamics with cubic integral in velocities

被引:22
作者
Elmandouh, A. A. [1 ,2 ]
机构
[1] King Faisal Univ, Fac Sci, Dept Math & Stat, POB 400, Al Ahsaa 31982, Saudi Arabia
[2] Mansoura Univ, Dept Math, Fac Sci, Mansoura 35516, Egypt
关键词
Integrability; Cubic integral; Rigid body dynamics; MECHANICAL SYSTEMS; KOVALEVSKAYAS; INVARIANTS; FREEDOM; ENERGY; MODELS;
D O I
10.1016/j.rinp.2017.12.050
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce a new family of the 2D integrable mechanical system possessing an additional integral of the third degree in velocities. This system contains 20 arbitrary parameters. We also clarify that the majority of the previous systems with a cubic integral can be reconstructed from it as a special version for certain values of those parameters. The applications of this system are extended to include the problem of motion of a particle and rigid body about its fixed point. We announce new integrable problems describing the motion of a particle in the plane, pseudosphere, and surfaces of variable curvature. We also present a new integrable problem in a rigid body dynamics and this problem generalizes some of the previous results for Sokolov-Tsiganov, Yehia, Stretensky, and Goriachev. (C) 2017 The Author. Published by Elsevier B.V.
引用
收藏
页码:559 / 568
页数:10
相关论文
共 37 条
  • [1] [Anonymous], J MATH
  • [2] Bertrand J.M., 1857, J. Math. Pure Appl., VII, P113
  • [3] Birkhoff G., 1927, Dynamical Systems
  • [4] Borisov A. V., 2005, Rigid Body Dynamics. Hamiltonian Methods, Integrability
  • [5] Darboux G., 1901, Archives Neerlandaises (ii), V6, P371
  • [6] New integrable problems in the dynamics of particle and rigid body
    Elmandouh, A. A.
    [J]. ACTA MECHANICA, 2015, 226 (11) : 3749 - 3762
  • [7] New integrable problems in rigid body dynamics with quartic integrals
    Elmandouh, A. A.
    [J]. ACTA MECHANICA, 2015, 226 (08) : 2461 - 2472
  • [8] The structure of energy conserving low-order models
    Gluhovsky, A
    Tong, C
    [J]. PHYSICS OF FLUIDS, 1999, 11 (02) : 334 - 343
  • [9] Goriachev D. N., 1915, WARSHAV U IZVEST, V3, P1
  • [10] Goriatchev D. N., 1900, MAT SBORNIK, V21, P431