Efficient Removal of Pb2+from Aqueous Solution by an Ionic Covalent-Organic Framework: Molecular Simulation Study

被引:38
作者
Gupta, Krishna M. [1 ]
Zhang, Kang [1 ]
Jiang, Jianwen [1 ]
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117576, Singapore
关键词
HEAVY-METAL IONS; WATER-PURIFICATION; FORCE-FIELD; EXCHANGE; WASTEWATERS;
D O I
10.1021/acs.iecr.8b00625
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
An ionic covalent-organic framework (ICOF-1 containing sp(3 )hybridized boron anionic centers formed by spiroborate linkage and dimethylammonium ions) is explored as an ion exchanger for the removal of lead (Pb2+) ions from aqueous solution. From molecular simulations, the Pb2+ ions are observed to exchange with the nonframework DMA(+) ions in the ICOF-1. At a concentration of 600 ppm, the Pb2+ ions are completely exchanged and reside in the ICOF-1, while the DMA(+) ions are in a dynamic equilibrium with the solution. It is revealed that the exchange between Pb(2+ )and DMA(+) is governed by the stronger attraction of Pb2+ with the negatively charged ICOF-1 framework. The radial distribution functions and mean-squared displacements further show that the exchanged Pb2+ ions are in a closer proximity to the ICOF-1 framework with a smaller mobility than DMA(+) ions. The simulation study provides microscopic insight into the ion-exchange process between Pb2+ and DMA(+), and it suggests that the ICOF-1 might be an intriguing candidate for water purification.
引用
收藏
页码:6477 / 6482
页数:6
相关论文
共 27 条
[1]   Unprecedentedly High Selective Adsorption of Gas Mixtures in rho Zeolite-like Metal-Organic Framework: A Molecular Simulation Study [J].
Babarao, Ravichandar ;
Jiang, Jianwen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (32) :11417-11425
[2]  
Clearfield A, 2010, NAT CHEM, V2, P161, DOI 10.1038/nchem.567
[3]   Ion exchange equilibria in zeolite minerals [J].
Colella, C .
MINERALIUM DEPOSITA, 1996, 31 (06) :554-562
[4]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197
[5]   Porous, crystalline, covalent organic frameworks [J].
Côté, AP ;
Benin, AI ;
Ockwig, NW ;
O'Keeffe, M ;
Matzger, AJ ;
Yaghi, OM .
SCIENCE, 2005, 310 (5751) :1166-1170
[6]   Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method [J].
Dabrowski, A ;
Hubicki, Z ;
Podkoscielny, P ;
Robens, E .
CHEMOSPHERE, 2004, 56 (02) :91-106
[7]   Covalent organic frameworks (COFs): from design to applications [J].
Ding, San-Yuan ;
Wang, Wei .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (02) :548-568
[8]   Ionic Covalent Organic Frameworks with Spiroborate Linkage [J].
Du, Ya ;
Yang, Haishen ;
Whiteley, Justin Michael ;
Wan, Shun ;
Jin, Yinghua ;
Lee, Se-Hee ;
Zhang, Wei .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (05) :1737-1741
[9]   Functional Mesoporous Metal-Organic Frameworks for the Capture of Heavy Metal Ions and Size-Selective Catalysis [J].
Fang, Qian-Rong ;
Yuan, Da-Qian ;
Sculley, Julian ;
Li, Jian-Rong ;
Han, Zheng-Bo ;
Zhou, Hong-Cai .
INORGANIC CHEMISTRY, 2010, 49 (24) :11637-11642
[10]   Removal of heavy metal ions from wastewaters: A review [J].
Fu, Fenglian ;
Wang, Qi .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2011, 92 (03) :407-418