Numerical Solution of Parabolic Problems Based on a Weak Space-Time Formulation

被引:14
作者
Larsson, Stig [1 ,2 ]
Molteni, Matteo [1 ,2 ]
机构
[1] Chalmers, Dept Math Sci, SE-41296 Gothenburg, Sweden
[2] Univ Gothenburg, SE-41296 Gothenburg, Sweden
基金
欧盟地平线“2020”;
关键词
Inf-Sup; Space-Time; Superconvergence; Quasi-Optimality; Finite Element; Error Estimate; Petrov-Galerkin;
D O I
10.1515/cmam-2016-0027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a weak space-time formulation of the heat equation and its use for the construction of a numerical scheme. The formulation is based on a known weak space-time formulation, with the difference that a pointwise component of the solution, which in other works is usually neglected, is now kept. We investigate the role of such a component by first using it to obtain a pointwise bound on the solution and then deploying it to construct a numerical scheme. The scheme obtained, besides being quasi-optimal in the L-2 sense, is also pointwise superconvergent in the temporal nodes. We prove a priori error estimates and we present numerical experiments to empirically support our findings.
引用
收藏
页码:65 / 84
页数:20
相关论文
共 17 条
[1]  
Andreev R., 2012, THESIS
[2]   On long time integration of the heat equation [J].
Andreev, Roman .
CALCOLO, 2016, 53 (01) :19-34
[3]   Stability of sparse space-time finite element discretizations of linear parabolic evolution equations [J].
Andreev, Roman .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (01) :242-260
[4]  
[Anonymous], 2006, SPRINGER SER COMPUT
[5]  
Babuska I., 1990, NUMER METH PART D E, V4, P343, DOI DOI 10.1002/num.1690060406
[6]  
Babuska I., 1989, NUMER METH PART D E, V4, P363, DOI DOI 10.1002/num.1690050407
[7]  
Babuska I., 1972, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, P1
[8]   ADAPTIVE WAVELET SCHEMES FOR PARABOLIC PROBLEMS: SPARSE MATRICES AND NUMERICAL RESULTS [J].
Chegini, Nabi ;
Stevenson, Rob .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (01) :182-212
[9]   Convergence Analysis of Spatially Adaptive Rothe Methods [J].
Cioica, Petru A. ;
Dahlke, Stephan ;
Doehring, Nicolas ;
Friedrich, Ulrich ;
Kinzel, Stefan ;
Lindner, Felix ;
Raasch, Thorsten ;
Ritter, Klaus ;
Schilling, Rene L. .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2014, 14 (05) :863-912
[10]  
Ern A., 2004, APPL MATH SCI, V159