Structural and electronic properties of two-dimensional stanene and graphene heterostructure

被引:44
作者
Wu, Liyuan [1 ]
Lu, Pengfei [1 ,4 ]
Bi, Jingyun [1 ]
Yang, Chuanghua [2 ]
Song, Yuxin [4 ]
Guan, Pengfei [3 ]
Wang, Shumin [4 ,5 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Minist Educ, POB 72, Beijing 100876, Peoples R China
[2] Shanxi Univ Technol SNUT, Sch Phys & Telecommun Engn, Hanzhong 723001, Shaanxi, Peoples R China
[3] Beijing Computat Sci Res Ctr, Beijing 100084, Peoples R China
[4] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China
[5] Chalmers Univ Technol, Dept Microtechnol & Nanosci, Photon Lab, S-41296 Gothenburg, Sweden
来源
NANOSCALE RESEARCH LETTERS | 2016年 / 11卷
基金
中国国家自然科学基金;
关键词
First-principles; Stanene; Graphene; Heterostructure; Structural properties; EPITAXIAL-GROWTH; PENTA-GRAPHENE; SILICENE; ADSORPTION; SUBSTRATE; GERMANENE; GAS;
D O I
10.1186/s11671-016-1731-z
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Structural and electronic properties of two-dimensional stanene and graphene heterostructure (Sn/G) are studied by using first-principles calculations. Various supercell models are constructed in order to reduce the strain induced by the lattice mismatch. The results show that stanene interacts overall weakly with graphene via van der Waals (vdW) interactions. Multiple phases of different crystalline orientation of stanene and graphene could coexist at room temperature. Moreover, interlayer interactions in stanene and graphene heterostructure can induce tunable band gaps at stanene's Dirac point, and weak p-type and n-type doping of stanene and graphene, respectively, generating a small amount of electron transfer from stanene to graphene. Interestingly, for model Sn(root 7)/Gd(5), there emerges a band gap about 34 meV overall the band structure, indicating it shows semiconductor feature.
引用
收藏
页数:9
相关论文
共 62 条
  • [1] Extraordinary Sunlight Absorption and One Nanometer Thick Photovoltaics Using Two-Dimensional Monolayer Materials
    Bernardi, Marco
    Palummo, Maurizia
    Grossman, Jeffrey C.
    [J]. NANO LETTERS, 2013, 13 (08) : 3664 - 3670
  • [2] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [3] Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium
    Cahangirov, S.
    Topsakal, M.
    Akturk, E.
    Sahin, H.
    Ciraci, S.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (23)
  • [4] Stability and electronic properties of two-dimensional silicene and germanene on graphene
    Cai, Yongmao
    Chuu, Chih-Piao
    Wei, C. M.
    Chou, M. Y.
    [J]. PHYSICAL REVIEW B, 2013, 88 (24)
  • [5] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [6] GROUND-STATE OF THE ELECTRON-GAS BY A STOCHASTIC METHOD
    CEPERLEY, DM
    ALDER, BJ
    [J]. PHYSICAL REVIEW LETTERS, 1980, 45 (07) : 566 - 569
  • [7] Chen ZY, 2010, DISASTER ADV, V3, P96
  • [8] Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene
    Davila, M. E.
    Xian, L.
    Cahangirov, S.
    Rubio, A.
    Le Lay, G.
    [J]. NEW JOURNAL OF PHYSICS, 2014, 16
  • [9] Electronic structures of silicene/GaS heterosheets
    Ding, Yi
    Wang, Yanli
    [J]. APPLIED PHYSICS LETTERS, 2013, 103 (04)
  • [10] Hybrid Graphene/Titania Nanocomposite: Interface Charge Transfer, Hole Doping, and Sensitization for Visible Light Response
    Du, Aijun
    Ng, Yun Hau
    Bell, Nicholas J.
    Zhu, Zhonghua
    Amal, Rose
    Smith, Sean C.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (08): : 894 - 899