Computing the functional proteome: recent progress and future prospects for genome-scale models

被引:51
作者
O'Brien, Edward J. [1 ,2 ]
Palsson, Bernhard O. [1 ,2 ,3 ,4 ]
机构
[1] Univ Calif San Diego, Bioinformat & Syst Biol Program, San Diego, CA 92103 USA
[2] Univ Calif San Diego, Dept Bioengn, San Diego, CA 92103 USA
[3] Univ Calif San Diego, Dept Pediat, San Diego, CA 92103 USA
[4] Danish Tech Univ, Novo Nordisk Ctr Biosustainabil, Lyngby, Denmark
关键词
HUMAN RED-CELL; ESCHERICHIA-COLI; GENE-EXPRESSION; METABOLIC DYNAMICS; HIGH-THROUGHPUT; IN-VIVO; GROWTH; TRANSLATION; EVOLUTIONARY; GENERATION;
D O I
10.1016/j.copbio.2014.12.017
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Constraint-based models enable the computation of feasible, optimal, and realized biological phenotypes from reaction network reconstructions and constraints on their operation. To date, stoichiometric reconstructions have largely focused on metabolism, resulting in genome-scale metabolic models (M-Models). Recent expansions in network content to encompass proteome synthesis have resulted in models of metabolism and protein expression (ME-Models). ME-Models advance the predictions possible with constraint-based models from network flux states to the spatially resolved molecular composition of a cell. Specifically, ME-Models enable the prediction of transcriptome and proteome allocation and limitations, and basal expression states and regulatory needs. Continued expansion in reconstruction content and constraints will result in an increasingly refined representation of cellular composition and behavior.
引用
收藏
页码:125 / 134
页数:10
相关论文
共 97 条
[1]  
Agapakis CM, 2012, NAT CHEM BIOL, V8, P527, DOI [10.1038/NCHEMBIO.975, 10.1038/nchembio.975]
[2]  
[Anonymous], 1987, ESCHERICHIA COLI SAL
[3]   Hydrophobicity and Charge Shape Cellular Metabolite Concentrations [J].
Bar-Even, Arren ;
Noor, Elad ;
Flamholz, Avi ;
Buescher, Joerg M. ;
Milo, Ron .
PLOS COMPUTATIONAL BIOLOGY, 2011, 7 (10)
[4]   The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters [J].
Bar-Even, Arren ;
Noor, Elad ;
Savir, Yonatan ;
Liebermeister, Wolfram ;
Davidi, Dan ;
Tawfik, Dan S. ;
Milo, Ron .
BIOCHEMISTRY, 2011, 50 (21) :4402-4410
[5]   Dynamic optimization identifies optimal programmes for pathway regulation in prokaryotes [J].
Bartl, Martin ;
Koetzing, Martin ;
Schuster, Stefan ;
Li, Pu ;
Kaleta, Christoph .
NATURE COMMUNICATIONS, 2013, 4
[6]   Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli [J].
Bennett, Bryson D. ;
Kimball, Elizabeth H. ;
Gao, Melissa ;
Osterhout, Robin ;
Van Dien, Stephen J. ;
Rabinowitz, Joshua D. .
NATURE CHEMICAL BIOLOGY, 2009, 5 (08) :593-599
[7]   Transcriptional regulation by the numbers: models [J].
Bintu, L ;
Buchler, NE ;
Garcia, HG ;
Gerland, U ;
Hwa, T ;
Kondev, J ;
Phillips, R .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2005, 15 (02) :116-124
[8]   Minimal metabolic pathway structure is consistent with associated biomolecular interactions [J].
Bordbar, Aarash ;
Nagarajan, Harish ;
Lewis, Nathan E. ;
Latif, Haythem ;
Ebrahim, Ali ;
Federowicz, Stephen ;
Schellenberger, Jan ;
Palsson, Bernhard O. .
MOLECULAR SYSTEMS BIOLOGY, 2014, 10 (07)
[9]   Constraint-based models predict metabolic and associated cellular functions [J].
Bordbar, Aarash ;
Monk, Jonathan M. ;
King, Zachary A. ;
Palsson, Bernhard O. .
NATURE REVIEWS GENETICS, 2014, 15 (02) :107-120
[10]   A system-level model for the microbial regulatory genome [J].
Brooks, Aaron N. ;
Reiss, David J. ;
Allard, Antoine ;
Wu, Wei-Ju ;
Salvanha, Diego M. ;
Plaisier, Christopher L. ;
Chandrasekaran, Sriram ;
Pan, Min ;
Kaur, Amardeep ;
Baliga, Nitin S. .
MOLECULAR SYSTEMS BIOLOGY, 2014, 10 (07)