Direct terrestrial test of Lorentz symmetry in electrodynamics to 10-18

被引:69
作者
Nagel, Moritz [1 ]
Parker, Stephen R. [2 ]
Kovalchuk, Evgeny V. [1 ]
Stanwix, Paul L. [2 ]
Hartnett, John G. [2 ,3 ]
Ivanov, Eugene N. [2 ]
Peters, Achim [1 ]
Tobar, Michael E. [2 ]
机构
[1] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
[2] Univ Western Australia, Sch Phys, Crawley, WA 6009, Australia
[3] Univ Adelaide, Sch Phys Sci, Inst Photon & Adv Sensing, Adelaide, SA 5005, Australia
来源
NATURE COMMUNICATIONS | 2015年 / 6卷
基金
澳大利亚研究理事会;
关键词
INVARIANCE; MODEL;
D O I
10.1038/ncomms9174
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lorentz symmetry is a foundational property of modern physics, underlying the standard model of particles and general relativity. It is anticipated that these two theories are low-energy approximations of a single theory that is unified and consistent at the Planck scale. Many unifying proposals allow Lorentz symmetry to be broken, with observable effects appearing at Planck-suppressed levels; thus, precision tests of Lorentz invariance are needed to assess and guide theoretical efforts. Here we use ultrastable oscillator frequency sources to perform a modern Michelson-Morley experiment and make the most precise direct terrestrial test to date of Lorentz symmetry for the photon, constraining Lorentz violating orientation-dependent relative frequency changes Delta v/v to 9.2 +/- 10.7 x 10(-19) (95% confidence interval). This order of magnitude improvement over previous Michelson-Morley experiments allows us to set comprehensive simultaneous bounds on nine boost and rotation anisotropies of the speed of light, finding no significant violations of Lorentz symmetry.
引用
收藏
页数:6
相关论文
共 34 条
  • [1] Hybrid electron spin resonance and whispering gallery mode resonance spectroscopy of Fe3+ in sapphire
    Benmessai, Karim
    Farr, Warrick G.
    Creedon, Daniel L.
    Reshitnyk, Yarema
    Le Floch, Jean-Michel
    Duty, Timothy
    Tobar, Michael E.
    [J]. PHYSICAL REVIEW B, 2013, 87 (09):
  • [2] Overview of the standard model extension: Implications and phenomenology of Lorentz violation
    Bluhm, R.
    [J]. SPECIAL RELATIVITY: WILL IT SURVIVE THE NEXT 101 YEARS?, 2006, 702 : 191 - 226
  • [3] IMPROVED LASER TEST OF THE ISOTROPY OF SPACE
    BRILLET, A
    HALL, JL
    [J]. PHYSICAL REVIEW LETTERS, 1979, 42 (09) : 549 - 552
  • [4] Noncommutative field theory and Lorentz violation
    Carroll, SM
    Harvey, JA
    Kostelecky, VA
    Lane, CD
    Okamoto, T
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (14) : 141601/1 - 141601/4
  • [5] Lorentz-violating extension of the standard model
    Colladay, D
    Kostelecky, VA
    [J]. PHYSICAL REVIEW D, 1998, 58 (11)
  • [6] Laboratory Test of the Isotropy of Light Propagation at the 10-17 Level
    Eisele, Ch.
    Nevsky, A. Yu.
    Schiller, S.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (09)
  • [7] NEW AETHER-DRIFT EXPERIMENT
    ESSEN, L
    [J]. NATURE, 1955, 175 (4462) : 793 - 794
  • [8] Rotating optical cavity experiment testing Lorentz invariance at the 10-17 level
    Herrmann, S.
    Senger, A.
    Moehle, K.
    Nagel, M.
    Kovalchuk, E. V.
    Peters, A.
    [J]. PHYSICAL REVIEW D, 2009, 80 (10):
  • [9] Improved constraints on isotropic shift and anisotropies of the speed of light using rotating cryogenic sapphire oscillators
    Hohensee, Michael A.
    Stanwix, Paul L.
    Tobar, Michael E.
    Parker, Stephen R.
    Phillips, David F.
    Walsworth, Ronald L.
    [J]. PHYSICAL REVIEW D, 2010, 82 (07):
  • [10] Quantum gravity at a Lifshitz point
    Horava, Petr
    [J]. PHYSICAL REVIEW D, 2009, 79 (08):